
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

McKelvey School of Engineering Theses & 
Dissertations McKelvey School of Engineering 

Spring 5-15-2014 

A Study of Sampling Strategies for Helical CT A Study of Sampling Strategies for Helical CT 

Daheng Li 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Li, Daheng, "A Study of Sampling Strategies for Helical CT" (2014). McKelvey School of Engineering 
Theses & Dissertations. 2. 
https://openscholarship.wustl.edu/eng_etds/2 

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington 
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses & 
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, 
please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=openscholarship.wustl.edu%2Feng_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/2?utm_source=openscholarship.wustl.edu%2Feng_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

 

 

 

 

Washington University in St. Louis 

School of Engineering and Applied Science 

Department of Electrical and Systems Engineering 

 
 

Thesis Examination Committee: 
Joseph A. O’Sullivan  

Hiroaki Mukai 
Jr-Shin Li 

David G. Politte 
 

A Study of Sampling Strategies for Helical CT 

by 

Daheng Li 

 
 

A thesis presented to the School of Engineering  
of Washington University in partial fulfillment of the 

requirements for the degree of 
 

Master of Science 
 

May 2014 
Saint Louis, Missouri 

 
 



 

ii 

 

 

 

 

 

ABSTRACT OF THE THESIS 

 
 

A Study of Sampling Strategies for Helical CT 

by 

Daheng Li 

Master of Science in Electrical Engineering 

Washington University in St. Louis, 2013 

Research Advisor:  Professor Joseph O’ Sullivan 

 

 

Two classes of subsampling strategies, partially inspired by ideas from compressed sensing (CS), are 
developed and tested using real medical x-ray CT data acquired with a helical geometry. A version of 
the Feldkamp algorithm for helical x-ray CT is described. An alternating minimization (AM) 
algorithm for finding the maximum-likelihood estimates of attenuation functions in transmission X-
ray tomography, developed by O’Sullivan and Benac, is then introduced. The derivation of this AM 
algorithm is extended to include an optional regularization term, which makes it a MAP estimate. A 
Newton’s method with trust region modification is implemented for the regularization. In addition, 
the alternating minimization (AM) algorithm when using data from a subset of detectors, developed 
by Snyder, is illustrated. Ordered subsets techniques are used to increase the convergence rate. 
Results of subsampling strategies are demonstrated on real data by subsampling the actual 
measurements and reconstructing.  
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Chapter 1 
 

Introduction 

 

Computed Tomography (CT) plays an important role in clinical diagnosis, and is also important in 

image-guided therapy [1][2]. Generally, a CT system is designed to measure some spatially-variant 

contrast, which is then used to distinguish materials. Today, important goals of diagnostic radiology 

are to minimize exposure of the patient to radiation and to minimize the time needed for data 

collection [3][4]. In general, for the same CT system, with more radiation dose (within a reasonable 

range) being used, higher image quality (higher signal-to-noise ratio, larger contrast, etc.) is 

obtainable. However, the scan will be more risky to the patients because of the additional radiation. 

The main risks are those associated with the increased possibility of cancer induction from x-ray 

radiation exposure. As CT instruments continue to evolve and novel geometries emerge, a need 

arises to understand the constraints on sampling of the data required to obtain images with 

diagnostically useful quality.  

 

Currently available multi-detector-row CT scanners collect an abundance of data and can serve as 

test-beds to evaluate multiple sampling strategies. These strategies can be inspired by some ideas 

from compressed sensing (CS) theories [5][6][7][8][9][10]. Fewer measurements potentially will 

require lower dose and less time to acquire data, but the challenge is that when reconstructed with 

state-of-the-art image reconstruction algorithms, they must produce images of diagnostic quality [11].  

 

The following three sections will focus on basic knowledge of the helical multi-detector-row CT, 

including the geometry, the data acquisition procedure and reconstructions.  
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1.1 Geometry 
 

Helical multi-detector-row X-ray CT has proven to be a successful imaging modality and it is widely 

used in numerous clinical applications. Multiple rows of detectors are arranged in a cylindrical arc on 

the opposite side of the patient port from the x-ray source at its center. During scanning, the source 

and detector array rotate together as the patient is being transported through the scanner. Figure 1.1, 

plotted by Daniel Keesing, shows the basic CT geometry used in this thesis [12].  

 

 

Figure 1.1  Geometry of the multi-detector-row X-ray CT used in this thesis.  

α is the angle of the x-ray source with respect to the x axis. The fan angle γ and the cone-angle η 

specify a particular detector element on the curved detector panel. Rf is the distance between the x-

ray source and the isocenter. The gantry rotates around the z axis, which defines the isocenter. Rd is 

the distance between the isocenter and the center of the detector array. zfeed is the axial distance 

traveled by the patient bed in one rotation.  
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1.2 CT Data Acquisition 
 
X-ray CT imaging uses an X-ray tube as a source. As the X-rays travel through the patient (or other 

objects being scanned), the photons are either absorbed by the tissue, scattered (i.e. Compton 

scattering), or transmitted [13]. As the source and detectors together move around in a certain 

pattern, the detectors, which are arranged on the opposite side of the patient from the source, 

collect photons that successfully travel through the patient from different positions and view angles. 

The proportion of transmission basically depends on the spectrum of the X-ray source, the 

geometry of the system and the spatially-variant attenuation coefficients of the body. With 

knowledge of the source and geometry, the measurements are preprocessed and used for the 

subsequent reconstruction.  

 

1.3 Reconstruction 
 
X-ray CT reconstruction is the procedure that uses the projections collected by the detector array to 

produce a series of cross-sectional images or a three-dimensional image volume. Reconstruction 

algorithms for CT reconstruction can be roughly divided into two main categories: analytical 

algorithms and statistical algorithms. Analytical algorithms are based on a deterministic model for 

the projections and generally are time-saving since no iterations are required in their 

implementations, but they may require a larger amount of data to weaken the artifacts. Statistical 

algorithms, on the other hand, are based on a physical model that reflects the mean and statistical 

features of the measurements and then optimize an objective function which finds the most likely 

image given the measured data. A prior model for the image can be included optionally. In this 

thesis, the analytical helical Feldkamp (FDK) algorithm is introduced first. Next, two statistical 

algorithms, the alternating minimization (AM) algorithm derived by O’Sullivan and Benac [14] and a 

different version used for incomplete projections derived by Snyder, O’Sullivan, Murphy, Politte, 

Whiting and Williamson [15], are illustrated.  
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1.4 Data Used in this Thesis 
 

Patient data acquired by Dr. Steven Don from a Siemens Sensation 16 scanner located at St. Louis 

Children’s Hospital were to evaluate the sampling strategies investigated in this thesis. A standard 

abdominal imaging protocol with contrast agent was used. The data were retrospectively processed 

with full approval from the Washington University Institutional Review Board (IRB). Each dataset 

contains 1160 views/rotation, approximately 12 rotations, 672 detectors/row and 16 rows. The 

width of the detectors is 0.00135413 (radius). The distance between the x-ray source and the 

isocenter, Rf, is 570.0 mm. Rotation time equals to 0.5s. zfeed for one rotation equals to 24mm [15].  
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Chapter 2 

  

Background 

 

This chapter describes the derivation of the FDK algorithm, the AM algorithm and the AM 

algorithm when projection data are incomplete. Also, the implementations are introduced and some 

results using real data are shown.  

2.1 Feldkamp (FDK) Algorithm 
 

2.1.1 Fourier-Slice Theorem 
 

The Fourier-slice theorem explains the important relationship between the 1-D Fourier transform of 

a projection and the 2-D Fourier transform of the object. This is the basis of the filtered 

backprojection method [13].  

 

Suppose we have a projection at angle  , denoted as ( , )g l  , where l  denotes the lateral position of 

the projection. The 1-D Fourier transform of it can be written as 

  2

1( , ) ( , ) ( , ) ,j l

DG g l g l e dl   





    where 1j= - .  

where  is spatial frequency. The projection ,g(l )  can be expressed as  

, , cos sin .g(l ) f (x y) (x y l )dxdy   
 

 
     

By substituting this into the previous expression, we have 

2( , ) ( , ) ( cos sin ) ,j lG = f x y x y l e dxdydl    
  



  
     

2 cos sin( , ) .j x yf x y e dxdy  
 

   

 
    
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Now, from the definition of the two-dimensional Fourier transform, we have the important 

relationship  

( , ) ( cos , sin ).G F       

This relationship states that the 1-D Fourier transform of a projection is a slice of the 2-D Fourier 

transform of the object.  

 

2.1.2 Standard Filtered Backprojection (FBP) Algorithm [13] 
 

The standard FBP algorithm using parallel-beam geometry can be derived using the Fourier-slice 

theorem. First, the inverse Fourier transform of  

( , ) ( cos , sin )G F       

can be written as 
2

2 cos sin

0 0
( , ) ( cos , sin ) j x yf x y F e d d


        


      

By applying the Fourier-slice theorem, we have  

2
2 cos sin

0 0
x, y ( , ) j x yf ( ) G e d d


      


      

               2 cos sin

0
( , ) j x yG e d d


      


  


    

                  2 cos sin

0
( , ) j x yG e d d


      


  



 
     

Here, the projection ( , )g l   is filtered by a ramp filter whose frequency response is  . In practice, 

the high-pass ramp filter should be apodized (cut off in the high frequency region) since the high 

frequency signal usually contains much noise that should not be amplified.  

 

2.1.3 FDK Algorithm Overview 
 
The FDK algorithm is a three-dimensional generalization of the standard filtered backprojection 

(FBP) algorithm [12][16][17]. Since a helical geometry and fan-beam are used in 3-D helical CT, 

applying FBP to a helical geometry requires a rebinning process in two directions:  

 rebinning from fan-beam geometry to parallel-beam geometry,  
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 rebinning from the 3-D data to the approximately equivalent 2-D projections in transverse 

planes.  

Once the projections are in a 2-D parallel geometry in transverse planes, the standard FBP algorithm 

can be readily applied.  

 

2.1.4 Helical Feldkamp (FDK) Implementation [12] 
 
The basic steps of our implementation are as follows:  

1. Perform row-wise fan-beam-to-parallel-beam rebinning.  

2. Filter the measured data with a ramp-filter multiplied by either of these two basic apodization 

windows in the frequency domain: 

-Hamming window: 0.54 0.46cos( )  

-Hann window: 0.5 0.5cos( )  

3. Sequentially reconstruct each slice by backprojecting a symmetric set of views on both sides of 

that slice. The overall backprojection expression is  

3
2 2

ˆ ˆˆ ˆ(x, y,z) ( , , ) ( , , ) ,
2 ˆ

m

m

f

d

m f

R
t t d

R






       

 



  

where 3
ˆ ˆ( , , )d t    is the redundancy weighting function, ˆ ˆ( , , )t    is the radially-filtered projection 

data, and  ,m m   is the angular extent of the fan beam.  

 

2.1.5 Results 
 
Some of the reconstructions of the Siemens Sensation 16 data using the Feldkamp algorithm are 

shown in Figure 2.1. Since the reconstructions are three dimensional, slices from different directions 

are shown.  
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(a)                                                                    (b) 

 

(c) 

Figure 2.1  Image reconstruction of data from subject number 1 on a  512 512 164  image space using the 

FDK algorithm. 1160 views were taken. (a) shows the 82nd axial slice , (b) shows the 256th coronal slice, and (c) 

shows the 256th sagittal slice. The display windows are [ ]0,0.0418  mm-1.  
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2.2 Alternating Minimization (AM) Algorithm  
 

2.1.1 AM Algorithm Overview 
 

The AM algorithm for transmission tomography, derived by O’Sullivan and Benac, is an algorithm 

for finding the maximum-likelihood estimate of the image under the assumption that the 

measurements obey a Poisson data model [13]. We define the model for the measurements in the 

following way.  

 

Let x  be a coordinate in the image space and y  be a source location and detector pair in 

the measurement space. The measured data ( )d y  are mutually independent and Poisson distributed 

given ( )c x , where ( )c x  is the attenuation coefficient to be estimated. Therefore  

( : )( : )
Pr[ ( ) ] ,

!

n
q y cq y c

d y n e
n

   

in which   

0( : ) ( )exp ( | ) ( ) ,
x

q y c I y h y x c x


 
  

 
     (Beer’s Law of Attenuation) 

where ( )oI y  is the source intensity at the source-to-detector pair y  and ( )h y | x  is the scanner’s 

point-spread function. The summation in the exponent represents the forward projection of the 

attenuation coefficients.  

 

The maximum-likelihood estimate of the image is found by solving the minimization problem  

ˆ( ) arg min [ ( ), | ( : ), ],            
c

c x I d y y q y c y x


     

where 

( )
[ ( ), | ( : ), ] ( ) ln ( ) ( : ).

( : )y

d y
I d y y q y c y d y d y q y c

q y c

 
     

 
  

The alternating-minimization (AM) algorithm identified by O’Sullivan and Benac (2006) produces a 

sequence of estimates with non-increasing I-divergence (non-decreasing likelihoods) [13]:  
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( 1) ( )

AM (k)

( | ) ( )1
ˆ ˆ( ) max ( ) ln ,0 ,

ˆ( ) ( | ) ( : )

yk k

y

h y x d y
c x c x

Z x h y x q y c





  
   
    




 

where max (y | x)
y

x

Z h


   and k  denotes the iteration index.  

2.1.2 AM Algorithm Implementation  
 

The basic steps of AM implementation using HECTARE 1.0 for our experiments are shown as 

follows.  

1. Allocate space for the current image estimate, the transmission data, two backprojections and one 

forward projection, read in parameters, transmission data, Bowtie  file and oI  file, and save them in 

the formats used by HECTARE 1.0.  

2. Calculate the update step size 1/ Z based on max (y | x).
y

x

Z h


   Restricting the step size in this 

manner ensures convergence [13]. 

3. If no data subsets are used, in each iteration forward-project the current image estimate to the 

detector space, save as Meandata .  

4. Perform exponentiation based on: exp( ) .oMeandata Meandata Bowtie I     

5. Back-project Meandata  and Transmissiondata  to image space, save as Meanbackprojection  

and Databackprojection  respectively.  

6. Update current image estimate based on: 

1
current max previous ln ,0 .

Databackprojection

Z Meanbackprojection

  
   

  
 

7, Write out the final estimate after all iterations are run.  

 

2.1.3 Results 
 

Data from a second subject scanned on the Siemens Sensation 16 were reconstructed using the AM 

algorithm. Some representative image slices are shown in Figure 2.2. (All subsequent reconstructions 

and figures in this thesis will use the data from this second subject.) 
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(a)                                                                    (b) 

 

 

 

 

 
 

(c) 

                                                                            
Figure 2.2  Image reconstruction of data from subject number 2 on a  512 512 164  image space using the 

AM algorithm. 1160 views were taken. (a) shows the 82nd axial slice , (b) shows the 256th coronal slice, and (c) 

shows the 256th sagittal slice. The display windows are [ ]0,0.0418  mm-1.  

 

 

 

 



 

  12 

 

2.3 Alternating Minimization (AM) Algorithm for 
Incomplete Projection Data 

 

2.3.1 AM Algorithm for Incomplete Projection Data Overview 
 

The reconstruction problem is to solve the minimization [14] 

 inc inc
ˆ( ) arg min ( ), | ( : ), ,

c

c x I d y y q y c y


    

which is analogous to the previous problem, but we utilize only the data from the set incy . There 

is no twist here; the algorithm uses all the available projections and finds the most likely image by 

minimizing the I-divergence between the measurements and the forward projection of the image 

being estimated. The minimization is equivalent to maximizing the log-likelihood [1].  

The sequence of estimates can be defined by  

inc

inc

( 1) ( )

AM ( )

( | ) ( )1
ˆ ˆ( ) max ( ) ln ,0 .

ˆ( ) ( | )q( : )

yk k

k

y

h y x d y
c x c x

Z x h y x y c





  
   
    




 

2.3.2 AM Algorithm for Incomplete Projection Data 
Implementation 

 

The implementations of the AM algorithm for incomplete projection data are similar to the original 

AM algorithm explained in 2.1.2. For completeness, the basic steps of the AM algorithm for 

incomplete projection data are explained as follows.  

 

1. Allocate space for an indicator, the current image estimate, the transmission data, two 

backprojections and one forward projection, read in parameters, transmission data, bowtie file and 

oI  file, and save them in the formats used by HECTARE 1.0. The indicator is a matrix of zeros and 

ones that specifies which detectors are in the set inc .  

2. Calculate the update step size 1/ Z based on max (y | x)
y

x

Z h


   to ensure convergence [1]. 
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3. If no data subsets are used, in each iteration, forward-project the current image estimate to the 

detector space, save as Meandata .  

4. Perform exponentiation based on: exp( ) .oMeandata Meandata Bowtie I Indicator      

5. Set the projection to 0 at the positions where the detectors are not used in the simulation: 

.Transmissiondata Transmissiondata Indicator   

6. Back-project Meandata  and transmission data to image space, save as Meanbackprojection  and 

Databackprojection  respectively.  

7. Update current image estimate based on: 

1
current max previous ln ,0 .

Databackprojection

Z Meanbackprojection

  
   

  
 

8. Write out the final estimate out after all iterations are run.  

 

Some results for this algorithm using different sampling strategies with the real data will be shown in 

Chapter 3.  

 

2.4 Adding an a Priori Model for the AM Algorithm 
 

2.4.1 Overview 
 

To suppress noise in the image arising from noise in the data, we penalize the difference between 

neighboring voxels, which enforces smoothness on the reconstructed image [15][18][19]. One such 

regularization penalty can be  

 ,( ) ( ) ( ) ,
x

x x

x x N

R c c x c x 
 

   

where xN  is the set of the 26-voxel neighborhood surrounding voxel x  and    is the potential 

function.  

The neighborhood weights, 
,x x 

, are chosen to be the inverse distance between voxel centers.    

is a symmetric convex function which can be written as  
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 2

1
(t) | | ln(1 | |) ,t t  


   

where   is a parameter that controls the transition between a quadratic region (for smaller t ) and a 

linear region (for larger t ).  

The complete cost function AM ( )c , including the regularization penalty, ( )R c , is  

AM ( ) [ ( ), | ( : ), ] ( ). c I d y y q y c y R c      

Our goal is to minimize AM ( )c  by iteratively updating the image estimate ( )c x . D. B. Keesing and 

J. A. O’Sullivan dan updating strategy which decouples the objective function and iteratively 

approach the local minimum by implementing Newton’s Method. The detailed deviation of the 

regularized AM algorithm can be found in [12] and [15]. The derivation is also attached in Appendix 

A for convenience. Some of the notation has been changed from that in the references for 

consistency of this thesis.  

 

When the objective function includes the penalty term, the estimated image is said to be 

“regularized.” We will use the terms “penalized” and “regularized” interchangeably below. 

 

2.4.2 Newton’s Method with Trust Region Modification 
 

To minimize the decoupled penalized objective function, Newton’s method is a good choice since 

the optimization here is a one-dimensional convex optimization problem with no constraints. 

Generally, for most points that are estimated in our case, only a few iterations of Newton’s method 

are needed to get close enough to the local minimizer.  

 

The well-known Newton’s method for solving the unconstrained minimization problem can be 

written as  

1 1 '(x ) (x ),k k k kx x G f    

where '(x )kf  is the gradient at the current estimate and (x )kG  is the Hessian matrix. The most 

fundamental requirement for Newton’s method is that the function f  has to be twice differentiable 

everywhere in the function’s domain. However, in general, successful implementation of Newton’s 
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method for practical applications requires further conditions. First, Newton’s method has no 

guarantee of convergence, especially when the initial guess is not “close” enough to the local 

minimizer. (In our case, the local minimizer is also a global one since our decoupled objective 

function is convex for nxR .) Second, the Hessian matrix may be singular (not invertible) so that 

no explicit solution can be given. Third, the Hessian matrix may be indefinite (e.g. at the saddle 

point), which makes some updating steps nonsensical [20].  

In our minimization problem, nonsensical steps might be taken by Newton’s method when the 

image update at a certain step depends on the evaluation of the Hessian in an almost linear region of 

the objective function. Under these conditions, the quadratic surrogate is not a good approximation 

of the objective function, resulting in an update that is too large. The image update might either 

oscillate back and forth (probably coming down to the local minimizer eventually) or generate NaN 

or Inf when the value exceeds the maximum. (There is a maximum since the implementations are 

done in C++.) Experience with numerous numerical experiments has shown that the probability of 

a NaN being computed rises when less data is used in the reconstruction. This is so because under 

these conditions the edge-preserving penalty would go to the linear region more readily.  

The idea of adding a trust region to force the convergence of Newton’s method is intuitive; we only 

“trust” updates within the trust region and otherwise skip that update. At the same time, we either 

keep, shrink or expand the trust region based on the decreasing rate of change of our objective 

function. The version of Newton’s method we used is based on [20].  

 

The algorithm for our optimization can be illustrated in this way:  

(1) Initialize parameters: set 1k  , maxk be the maximum number of iterations, 1 20     and 

3  be a small number between 0 and 1 (0.05 in my experiments). Set 1 2      . Set radius 

rad  and the maximum of radius rad_max  to any positive values.  

(2) Calculate the value of our decoupled objective function ( ( )f   ) and its first ( ( )f  ) and 

second order derivatives ( ( )f  ). This calculation is the same as for Newton’s method 

illustrated previously. Formulas can be found in Appendix A.  

(3) If converge, then STOP. The convergence criterion is set up as:  

(A) when decrement  drops below a small enough value,  

where  2( ) / 2 ( )decrement f f    .  
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(B) when rad  drops below a small enough value.  

(C) when maxk k .  

 When any of the above criteria are satisfied, the algorithm stops.  

(4) Calculate Newton’s method step using  

( ) / ( )w f f    .  

If the absolute value of w  exceeds the boundary trust region, set w  to the boundary.  

(5) Calculate the new value of our decoupled objective function and its first and second order 

derivatives.  

(6) Calculate the actual reduction of the objective function value and the predicted reduction.  

RE ( ) ( )actual f f     , 

2( ) ( ) / 2predictRE f w w f       . 

RE

RE

actual

predict

ratio  .  

(7) If 1ratio  , then 1rad rad.    

If 2ratio  , then 2min( )rad rad, rad_max .    

If ( )f    , then 3rad rad.    

(8) If RE 0actual   , update image and iteration:  

     

1.k k   

(9) Go to step 3.  

End.  

 

Comments:  

1. There are ways to update the trust region radius. For example, 1 , 2 , 3  can be adaptively 

decided based upon available information. This idea is mentioned in [20].  

2. To predict the reduction of our objective function, a quadratic surrogate is introduced at the 

current  . The quadratic surrogate at   is defined by the first three terms of the Taylor series 

for ( )f  . The original Newton’s method takes the minimizer of the quadratic surrogate as its 
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updating step. With trust region modification, we take the regular Newton’s step only if that step 

is within the trust region. Otherwise, we use the boundary of our trust region.  

3. There are some possible modifications that can be done here, which might make the algorithm 

converge with lower computational complexity in some cases. For example, in step 7, if 

1ratio  , we shrink   directly by a factor of 1  and check only the ratio. We keep shrinking it 

until the ratio goes to a value larger than 1 . Since we only need to recalculate the function value 

at      without computing the derivatives, this would probably reduce some computation in 

some cases.  

4. The convergence of this algorithm has been shown by many authors including D. C. Sorensen 

[20].  

 

2.4.3 Implementation 
 

In the original HECTARE, a regular Newton’s method is implemented. However, when we “throw 

away” a fraction of data, Newton’s method has no guarantee of convergence and may generate 

NaNs (not a number) when implemented. This is the original motivation for implementing a 

modified Newton’s method for our case to force convergence and avoid the NaN issue.  

 

Images computed using unregularized AM and regularized AM with different penalty weights are 

shown in Figure 2.3. Based on the profiles of values of the image in the highlighted row of pixels, 

the larger penalty weight is seen to correspond to a smoother image, but without any apparent 

blurring of the edges of transition regions. 
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Unregularized AM, 50 Iters

Regularized AM,  = 1600, 50 Iters

Regularized AM,  = 16000, 50 Iters

 

     (c)                                                                  (d) 

Figure 2.3  Image reconstruction on a  512 512 164  image space using the AM algorithm. The 82nd axial 

slice is shown in all panels. (a) unregularized reconstruction, 50 iterations,  (b) regularized reconstruction, 

penalty weight    , 50 iterations, (c) regularized reconstruction, penalty weight    , 50 iterations, 

82nd  and (d) the image profiles through row 256. The display windows are [ ]0,0.0418  mm-1.  
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2.5 Ordered Subsets 
 

Ordered subsets (OS), also known as a block iterative or incremental gradient method, is a well-

known technique used to speed up the convergence of a large family of iterative algorithms [21]. 

Due to the high computational intensity, iterative algorithms are not widely used in clinical 

applications. However, techniques like ordered subsets can significantly increase the convergence 

speed. OS are now widely used. One of the famous examples is the EM algorithm for emission 

tomography, which usually introduces OS.  

 

The main idea of the OS method is that, for each iteration, one can divide the measurements into 

ordered disjoint sets and run the algorithm with data in each subset sequentially. The advantage is 

obvious: in each iteration, when executing the algorithm with the nth subset, the object has already 

been updated with the previous (n-1) subsets. In the CT application, the computational cost of 

executing forward and backprojection does not increase when OS are used since the number of 

source-detector pairs to be projected stays the same as in the regular AM iteration, no matter if these 

projections are performed for every measurement in the context of an iteration of an ordinary 

algorithm or if subsets of the measurements are projected within the “subiterations” of the OS 

version of the algorithm. Although the computational cost of executing the image update increases 

proportionally with the number of ordered subsets, this cost is lower than the cost of projection 

operations in general. This is especially the case when executing the regular AM algorithm, in which 

the updates are analytical and the computational costs for this operation are very low.  

 

However, it has to be pointed out that ordinary OS algorithms generally do not converge to the 

optimal point. Reference [26] offers an OS algorithm in which convergence is guaranteed by the 

introduction of relaxation parameters. This paper also mentions that convergence is more important 

in regularized methods because, for maximum likelihood (ML) methods, one usually does not run 

ML until convergence. Moreover, for most cases, there is usually a trade-off between speed 

acceleration and image quality with respect to the number of subsets.  

  

In addition, some other papers [21]-[24] also proposed the use of an aggressive number of subsets in 

the first few iterations and then to switch to fewer subsets after that. However, in this thesis, we 
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simply choose a reasonable number of subsets and never switch it since the main concern here is 

about sampling strategies. I did a lot of experiments to adjust the number of subsets in different 

cases by comparing the cost function values to achieve a balance. The images presented in the 

following sessions are at least “sub-optimal”.  

 

To investigate the effect of including OS on the convergence behavior of the AM algorithm, 

regularized AM algorithm with different numbers of subsets are tested and objective function value 

at different iterations are tracked. In Figure 3.1, we compare the values of the I-divergence term and 

penalty term separately.  
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(b) 

Figure 2.4  Image reconstruction on a  512 512 164  image space with full data using the regularized AM 

algorithm. (a) a plot of I-divergence at different iterations with different number of subsets,  (b) a plot of total 

penalty values at the corresponding iterations with the corresponding number of subsets.  

 
The result shows that with more subsets, the data fitting term, I-divergence, in regularized AM 
algorithm almost converges to the same point with 1, 5, 29 OS being used. The convergence is 
speeded up almost proportional to the number of OS. As for the penalty term, it diverges faster with 
more OS.  
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Chapter 3 

 

Sampling 
 

Sampling is the process of converting a signal, which in general is continuous, into a numeric 

sequence (discrete time or space). In this chapter, we mainly focus on sampling issues in the CT 

application.  

3.1 Nyquist-Shannon Sampling Theory Applied to 
CT 

 

The famous Nyquist-Shannon sampling theorem states that if a function ( )x t  contains no 

frequencies higher than B  Hertz, it is completely determined by giving its ordinates at a series of 

points spaced 1/ (2 )B  seconds apart. In other words, a bandlimited function can be perfectly 

reconstructed from a countable sequence of samples if the bandlimit, B , is no greater than half 

the sampling rate. The following pages contain analysis of the Nyquist-Shannon sampling theory in 

the CT application.  

 

3.1.1 Number of Samples per Projection 
 

The first goal is to estimate the number of samples per projection, sN  needed in CT, by applying 

the Nyquist-Shannon theorem. Setting maxf  as the highest frequency or bandwidth limit of the 

imaging system, the theorem specifies that the sampling frequency max2sf f [25]. Now the number 

of samples per projection based on the sampling theorem is  

max2sN f FOV  , 

where FOV is the diameter of the field of view to be imaged.  

http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Bandlimited
http://en.wikipedia.org/wiki/Countable
http://en.wikipedia.org/wiki/Sampling_rate
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Specifically, for most of the experiments shown in this thesis, each image slice is set to be 

512 512 pixels and each pixel is 1 1mm mm . In our case, the Siemens Sensation 16 scanner has 

672sN  . Therefore, if the maximum frequency is lower than 0.656 / mm , the reconstruction can 

avoid aliasing. Since the pixel size in the transverse (axial) plane is 1 1mm mm , the maximum 

resolution due to this choice is 0.5 / mm .  

 

3.1.2 Number of Projections 
 

The number of projections, pN  , is calculated to ensure complete filling of the k-space up to the 

highest frequency [25]. The Fourier-Slice theorem, illustrated previously in chapter 2, states that the 

1-D Fourier transform of a projection is a slice of the 2-D Fourier transform of the object. In other 

words, the 1-D Fourier transform of a projection equals a line passing through the origin of the 2-D 

Fourier transform of the object at the angle corresponding to that projection [13]. Therefore, for 

max2sN f FOV  , to accomplish the complete filling, the number of samples/distance along the 

largest circle in u, v space (see Figure 3.1) has to be set equal to or larger than the number of 

samples/distance along the radial direction [25]. Here, sN  determines the dimension of the 

corresponding Fourier space.  

 

Figure 3.1  The K-space of the image domain is shown. The points on each line are equivalent to the Fourier 

transform of the corresponding projection. d denotes the distance between any adjacent points on the largest 

circle. Based on our analysis, d has to be smaller than the distance between any adjacent points on any line.  

d 

u 

v 
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Now, since the number of points in the diameter of the largest circle in k-space is sN  and each 

projection provides two points along the circumference of the largest circle, the minimum number 

of projections needed is ( / 2)p sN N    . Specifically, the CT system we used for our experiments 

contains 672 detectors per row and therefore at least 1056 views are required. The number of views 

of the Siemens Sensation 16 is 1160, which is enough based on the analysis above.  

 

3.2 Compressed Sensing 
 

3.2.1 Introduction to Compressed Sensing 
 
The Fourier-slice theorem indicates some relationships between the projections in the data space 

and the object in the image space and helps us to understand how angular sampling can influence 

reconstructions[19]. On the other hand, conventional approaches to sampling signals follow the 

celebrated Nyquist-Shannon sampling theory: the sampling frequency must be at least twice the 

maximum frequency of the signal so that it can be perfectly recovered [5][6][10]. In practice, this is 

the fundamental principle for numerous applications, ranging from audio and visual signal sampling 

(analog-to-digital) to imaging systems. Notice that in many applications, the signal is not band-

limited or the highest frequency is so high that too many samples are required. For example, for a 

period of music played by real instruments, since it is time limited, it is not band-limited. Therefore, 

the Nyquist-Shannon sampling theory, in this case, cannot be applied directly. To deal with it, the 

sampling rate is determined by the desired temporal resolution [5] and the higher frequency part of 

the signal will be treated as noise and filtered out. Specifically, in our medical CT application, the 

object is not band-limited since it is space limited. In this case, the desired highest frequency for the 

signal taken into consideration is determined by the number of pixels per millimeter in the field of 

view. Also, when FBP-based (filtered backprojection) algorithms are implemented, it is common to 

use an anti-aliasing low-pass filter to bandlimit the signal before sampling.  

 

So far, all the analysis about sampling above in this chapter is based on the Nyquist –Shannon 

sampling theory. A more novel sensing/sampling paradigm, compressed/compressive 

sensing/sampling (CS), asserts that one can recover images/signals from far fewer samples or 
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measurements [5][6][10]. CS relies on the sparsity of the signals. Here, sparsity refers to the idea that 

many natural signals, either continuous time or discrete time, can be approximated with small error 

by much less data than is required by the Nyquist-Shannon sampling theory. In other words, many 

natural signals have sparse representations (most coefficients are small or zeros) when the basis is 

chosen in a smart way. One of the most common examples is the wavelet transform. Also, if matrix 

decomposition methods are implemented, one can also force the sparsity by adding a sparsity 

constraint. These ideas are introduced by numerous papers.  

 

Mathematically, a signal can be represented as  

1

( ) ( ),
n

i i

i

f t x t


  

where ( )i t  are the orthonormal basis and ix  are the coefficients.  

 

The signal ( )f t  is called K -sparse if only K  of the ix  are nonzero and ( )n K  are zeros. 

Compressed sensing concerns mostly the case when K n . In this case, the signal is highly 

compressible. Once signals are K -sparse and compressible, one can do transform coding. First, the 

full n -sample signal ( )f t  is acquired. After a signal basis ( )i t  is selected, one can compute the 

coefficients ix  via Tx f . Then, the K highest ix  are encoded and the others are discarded. 

Now the question is: since ( )n K  coefficients are thrown away, why do we sample the full n -

sample signal ( )f t ? Can we directly sample the K  useful coefficients without acquiring n  samples?  

 

The answer is positive. Consider a linear measurement process that has an m n  sensing matrix 

m n  . Suppose the sensing system is underdetermined, that is m n . Now the measurements can 

be expressed as  

y =  f x . 

Now if we can design a stable (non-adaptive) measurement matrix m n   such that the down-

sampling process ( m n ) can save the information of the K highest coefficients and then derive a 

reconstruction algorithm to recover the signal, we would be able to take only m samples but 

reconstruct higher dimensional signals.  
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Many papers, including [5], [6], and [10] illustrated three conditions for this measurement matrix 

m n   to be “decent.”  

 

First condition (necessary and sufficient condition):  

Suppose m K , a necessary and sufficient  condition for m n   to be “decent” is that, for any vector 

  sharing the same K nonzero entries as x  and for some    ,  

2

2

1


  


    

This means that the matrix   must be norm-preserving as to the vector  .  

 

Second condition (sufficient condition):  

A sufficient condition for K-sparse signals is that   satisfies the first condition for an arbitrary 

3K-sparse vector  . This condition is called the restricted isometry property (RIP).  

 

Third condition, named the incoherence condition, is related to the second one. Coherence refers to 

a relationship between the sensing/sampling basis (t)j  and the signal basis (t)i . The level of 

coherence can be defined as [5] 

 
1 ,

(t), (t)] max .i j j i
i j N

C N   
 

    

Here, (t), (t)] [1, ].i jC N    

The incoherence condition forces that the rows  j  of   cannot sparsely represent the columns 

 i  of   (and vice versa).  

 

Interestingly, both the RIP condition and incoherence condition can be achieved with high 

probability by choosing   as a random matrix. A simple proof of these conditions can be found in 

[26]. This conclusion is our motivation for the random sampling experiments.  
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3.2.2 Sampling Issues in Helical CT  
 

There are numerous kinds of imaging systems being developed and widely used. Examples are 

traditional film cameras and modern digital cameras. As for computed tomography, the system 

generates sinograms as the measurements. Each point in a sinogram is an inner product of the image 

with a source-to-detector line. Those lines define the row vectors in the system matrix and therefore 

define the “sampling basis.” Mathematically, if we define the image as ( )c x  with size N , the 

measurements as (y)d  with size M and the system matrix A  with size M N . One possible model 

for the CT system can be  

,A d c n  

where n  is additive noise.  

 

In our helical CT system, for a certain detector at a certain position, the data collected by that 

detector only depends on those voxels cut by that source-to-detector line. So, in our case, the system 

matrix A  is sparse. Motivated by the theorems from compressed sensing (CS), we wish the system 

matrix A  to be a random one. However, with our fixed CT system, no solutions have been found to 

make the system random enough to satisfy the RIP and incoherence condition. Nevertheless, in 

uniform-pattern and random-pattern sampling introduced in section 3.3, the experiments were done 

by adding a random mask on the sinogram (setting some of the values to zero). In the next section, 

we focus on the experiments and analysis.  

 

3.3 Possible Sampling Strategies in Helical 
Geometry 

 

3.3.1 An Overview of Our Experiments 
 

Fortunately, with full data available, various sampling approaches can be simulated by using partial 

data to do the reconstruction. Based on the previous analysis, we tested some subsampling strategies. 
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1. Subsampling by views:  

• Uniformly take a subset of the views, i.e., every 2nd, every 5th, every 10th or every 29th view.  

• Algorithms used: FDK, unregularized AM and regularized AM.  

 

2. Subsampling by detectors:  

• Uniform-pattern sampling: randomly select a subset of detectors for the first view and use 

the same sampling pattern for all the other views.  

• Random-pattern sampling: randomly select a subset of detectors for each view 

independently.  

• Algorithms used: unregularized AM and regularized AM.  
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3.3.2 Subsampling by Views 
 

In this section, we choose a subset of uniformly spaced views to use in the reconstructions and 

discard the remaining views. Starting with the full-data case, we progressively discard more and more 

views and plot the profile through the central cutting line to evaluate the performance.  

 

 

(a)                                                                      (b) 

 

                                                                          (c) 

Figure 3.2  Image reconstruction from full-view data, all detectors. The 82nd axial slice is shown in all panels. 

(a) FDK algorithm, (b) unregularized AM algorithm, 50 iterations, and (c) regularized AM algorithm, penalty 

weight    , 50 iterations. The display windows are [ ]0,0.0418  mm-1.  
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Figure 3.3  Profiles of the FDK, unregularized AM and regularized AM with     images shown in Figure 

3.2. Full-views are used here. The profiles are plotted along the lines at row 256, as shown in Figure3.2.  

 

In this experiment, with all the data, all of the three algorithms perform well. Figure 3.3 shows that 

the profiles are close to each other. In the region of air, FDK generates some small fluctuations that 

are not observable from Figure 3.2(a). In the next experiment, we take every other view and “throw 

away” the others.  
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(a)                                                                (b) 

 

                                                                         (c) 

Figure 3.4  Image reconstruction from 1/2 of the views of data, all detectors. The 82nd axial slice is shown in all 

panels. (a) FDK algorithm, (b) unregularized AM algorithm, 50 iterations, and (c) regularized AM algorithm, 

penalty weight    , 50 iterations. The display windows are [ ]0,0.0418  mm-1.  
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Figure 3.5  Profiles of the FDK, unregularized AM and regularized AM with     images shown in Figure 

3.4. 1/2 of the views are used here. The profiles are plotted along the lines at row 256, as shown in Figure 3.4. 

 

In this experiment, with every other view taken, all of the three algorithms still perform well. Figure 

3.5 shows that the profiles are close to each other within the object. But in the region of air, FDK 

generates some fluctuations that are more obvious here than the ones in the full-data case. Next, we 

test a more extreme case which takes every fifth view.  
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(a)                                                                 (b) 

 

                                                                             (c) 

Figure 3.6  Image reconstruction from 1/5 of the views of data, all detectors. The 82nd axial slice is shown in all 

panels. (a) FDK algorithm, (b) unregularized AM algorithm, 50 iterations, and (c) regularized AM algorithm, 

penalty weight    , 50 iterations. The display windows are [ ]0,0.0418  mm-1.  

 

 

 



 

  34 

 

0 100 200 300 400 500
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Index of x-Coordinate

L
in

e
a
r 

A
tt
e
n
u
a
ti
o
n
 C

o
e
ff
ic

ie
n
t 
(m

m
-1

)

 

 

FDK algorithm

Unregularized AM, 50 Iters

Regularized AM,  = 100, 50 Iters

 

Figure 3.7  Profiles of the FDK, unregularized AM and regularized AM with     images shown in Figure 

3.6. 1/5 views are used here. The profiles are plotted along the lines at row 256, as shown in Figure 3.6. 

 

In this experiment, with every fifth view taken, we can find some obvious aliasing artifacts with 

FDK reconstruction, especially in the area of the bed. Unregularized AM and regularized AM 

perform well with this 1/5 views sampling. Figure 3.7 shows that in the region of air, FDK 

generates obvious fluctuations, which are stronger than the ones by taking every other view. Next, 

we test a more extreme case which takes every tenth view.  
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(a)                                                                 (b) 

 

                                                                            (c) 

Figure 3.8  Image reconstruction from 1/10 of the views of data, all detectors. The 82nd axial slice is shown in 

all panels. (a) FDK algorithm, (b) unregularized AM algorithm, 50 iterations, and (c) regularized AM 

algorithm, penalty weight    , 50 iterations. The display windows are [ ]0,0.0418  mm-1.  
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Figure 3.9  Profiles of the FDK, unregularized AM and regularized AM with     images shown in Figure 

3.8. 1/10 views are used here. The profiles are plotted along the lines at row 256, as shown in Figure 3.8. 

 

In this experiment, with every tenth view taken, more obvious aliasing artifacts from FDK 

reconstruction can be found, especially in the area of the bed. Unregularized AM and regularized 

AM start generate aliasing artifacts. Figure 3.9 shows that in the region of air, FDK generates more 

obvious fluctuations. Next, we test the most extreme case among our experiments for few-view 

sampling, which takes every twenty-ninth view.  
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(a)                                                                 (b) 

 

                                                                              (c) 

Figure 3.10  Image reconstruction from 1/29 of the views of data, all detectors. The 82nd axial slice is shown in 

all panels. (a) FDK algorithm, (b) unregularized AM algorithm, 50 iterations, and (c) regularized AM 

algorithm, penalty weight    , 50 iterations. The display windows are [ ]0,0.0418  mm-1.  
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Figure 3.11  Profiles of the FDK, unregularized AM and regularized AM with     images shown in Figure 

3.10. 1/29 views are used here. The profiles are plotted along the lines at row 256, as shown in Figure 3.10. 

 

In this experiment, with every twenty-ninth view taken, severe aliasing artifacts from FDK 

reconstruction can be found and make the image quality extremely bad. Details are violated, which 

makes the image diagnostically useless. Unregularized AM generates obvious aliasing artifacts. To 

suppress those artifacts,     is used. The aliasing artifacts are weakened to some extent, 

especially inside the object. However, the artifacts still exist and details are blurring. Figure 3.11 (c) 

shows that FDK generates insensible fluctuations and the fluctuations within the profile of 

unregularized AM are smoothed with regularization.  
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3.3.3 Subsampling by Detectors 
 

In this section, we choose a subset of detectors to use in the reconstructions and discard the 

remaining detectors. As mentioned in section 3.3.1, we have two kinds of sampling strategies with 

subsampling by detectors: uniform pattern sampling and random pattern sampling. As for uniform 

pattern sampling, we randomly select a subset of detectors for the first view and use the same 

sampling pattern for all the other views. As for random pattern sampling, we randomly select a 

subset of detectors for each view independently. Specifically, the random selection is done by 

Poisson sampling, which selects detectors based on independent and identically distributed (i.i.d.) 

Bernoulli trials. Therefore, for the following experiments, the proportion of detectors being used is 

approximated. Starting with 1/2 data case, we progressively discard more and more detectors and 

plot the profile through the central cutting line to evaluate the performance.  

 

 

 

(a)                                                                (b) 
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                                                                                        (c) 

Figure 3.12  Image reconstruction from data collected from approximately 1/2 of the detectors, uniform pattern 

sampling, all views. The 82nd axial slice is shown in all panels. (a) unregularized AM algorithm, 50 iterations, 

(b) regularized AM algorithm, penalty weight    , 50 iterations, and (c) profiles of unregularized AM 

and regularized AM with     from row 256. The display windows are [ ]0,0.0418  mm-1.  

 

In this experiment, with 1/2 detectors uniform-pattern sampling, spiral artifacts appear when using 

unregularized AM. Regularized AM suppresses the spiral artifacts to some extent with    . 

Figure 3.12 (c) shows that the fluctuations within the profile of unregularized AM are smoothed 

with regularization. Next, we still use approximately 1/2 of the detectors, but with random pattern 

sampling.  

 

 

 



 

  41 

 

 

(a)                                                               (b) 

0 100 200 300 400 500
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Index of x-Coordinate

L
in

e
a
r 

A
tt
e
n
u
a
ti
o
n
 C

o
e
ff
ic

ie
n
t 
(m

m
-1

)

 

 

Unregularized AM, 50 Iters

Regularized AM,  = 3200, 50 Iters

 

                                                                   (c) 

Figure 3.13  Image reconstruction from data collected from approximately 1/2 of the detectors, random pattern 

sampling, all views. The 82nd axial slice is shown in all panels. (a) unregularized AM algorithm, 50 iterations, 

(b) regularized AM algorithm, penalty weight    , 50 iterations, and (c) profiles of unregularized AM 

and regularized AM with     from row 256. The display windows are [ ]0,0.0418  mm-1.  

 

In this experiment, with 1/2 detectors random-pattern sampling, salt and pepper noise, instead of 

spiral artifacts, appear when using unregularized AM. Regularized AM suppresses the noise well with 

   . Figure 3.13 (c) shows that the fluctuations within the profile of unregularized AM are 
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smoothed well with regularization. Next, approximately 1/10 of the detectors are taken with 

uniform pattern sampling.  
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                                                                         (c) 

Figure 3.14  Image reconstruction from data collected from approximately 1/10 of the detectors, uniform 

pattern sampling, all views. The 82nd axial slice is shown in all panels. (a) unregularized AM algorithm, 50 

iterations, (b) regularized AM algorithm, penalty weight    , 50 iterations, and (c) profiles of 
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unregularized AM and regularized AM with     from row 256. Newton’s method with a trust region was 

used. The display windows are [ ]0,0.0418  mm-1.  

 

In this experiment, with 1/10 detectors uniform-pattern sampling, spiral artifacts get much stronger 

when using unregularized AM. Regularized AM suppresses the spiral artifacts to a great extent with 

   , but the artifacts are still obvious. Figure 3.14 (c) shows that the fluctuations within the 

profile of unregularized AM are smoothed with regularization. Next, we still use approximately 1/10 

of the detectors, but with random pattern sampling.  

 

 

 

(a)                                                                (b) 
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                                                                               (c) 

Figure 3.15  Image reconstruction from data collected from approximately 1/10 of the detectors, random 

pattern sampling, all views. The 82nd axial slice is shown in all panels. (a) unregularized AM algorithm, 50 

iterations, (b) regularized AM algorithm, penalty weight    , 50 iterations, and (c) profiles of 

unregularized AM and regularized AM with     from row 256. Newton’s method with a trust region was 

used. The display windows are [ ]0,0.0418  mm-1.  

 

In this experiment, with 1/10 detectors random pattern sampling, salt and pepper noise gets 

stronger compared to the image using 1/2 detectors random pattern sampling with unregularized 

AM. Regularized AM suppresses the noise well with    . Figure 3.13 (c) shows that the 

fluctuations within the profile of unregularized AM are smoothed well with regularization. Next, 

approximately 1/29 of the detectors are taken with uniform pattern sampling.  
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                                                                              (c) 

Figure 3.16  Image reconstruction from data collected from approximately 1/29 of the detectors, uniform 

pattern sampling, all views. The 82nd axial slice is shown in all panels. (a) unregularized AM algorithm, 50 

iterations, (b) regularized AM algorithm, penalty weight    , 50 iterations, and (c) profiles of 

unregularized AM and regularized AM with     from row 256. Newton’s method with a trust region was 

used. The display windows are [ ]0,0.0418  mm-1.  

 

In this experiment, with 1/29 detectors uniform-pattern sampling, spiral artifacts are extremely 

strong when using unregularized AM. Even with regularization, the artifacts are still obvious and 
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details of the image are almost blurred out. Figure 3.14 (c) shows that the regularization does not 

help in this case. Next, we still use approximately 1/29 of the detectors, but with random pattern 

sampling.  
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                                                                          (c) 

Figure 3.17  Image reconstruction from data collected from approximately 1/29 of the detectors, random 

pattern sampling, all views. The 82nd axial slice is shown in all panels. (a) unregularized AM algorithm, 50 

iterations, (b) regularized AM algorithm, penalty weight    , 50 iterations,  and (c) profiles of 
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unregularized AM and regularized AM with     from row 256. Newton’s method with a trust region was 

used. The display windows are [ ]0,0.0418  mm-1.  

 

In this experiment, with 1/29 detectors random pattern sampling, salt and pepper noise gets even 

stronger compared to the image using 1/10 detectors random pattern sampling with unregularized 

AM. However, regularized AM suppresses the noise perfectly with    . The image quality in 

Figure 3.13 (b) is surprisingly good. Figure 3.13 (c) shows that the fluctuations within the profile of 

unregularized AM are smoothed well with regularization.  

 

3.3.3 Conclusions of the Experiments 
 

1. When using all 672x16 detectors and subsampling by views, FDK creates starburst-like aliasing 

artifacts and the image quality deteriorates when taking every tenth view. FDK algorithms are 

not suitable for image reconstruction from data with few views because they are derived from a 

continuous sampling model and therefore densely sampled projections are required to avoid 

aliasing.  

2. AM avoids the starburst-like aliasing artifacts when taking every tenth view, but the image quality 

degrades when using every twenty-ninth view. The idea that optimization-based reconstruction 

with a discrete image model can be more effective than analytic-based reconstruction in dealing 

with few projections has been investigated by numerous authors [7][11][25]. I include my results 

here to illustrate this idea again.  

3. When using all the views, reconstructing with uniform pattern subsampling of detectors using 

the AM algorithm creates a spiral artifact, especially at the central region of the image. The spiral 

artifact is more apparent when fewer detectors are used. The regularization method suppresses 

this artifact to some extent.  

4. Reconstruction from random-pattern subsampling of the detectors using the AM algorithm 

avoids the spiral pattern but generates salt and pepper noise. However, with proper 

regularization, the salt and pepper noise is suppressed. When 1/29 of the detectors are used, 

random-pattern subsampling still performs well with proper regularization.  
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Chapter 4 

 

Conclusions and future work 
 

4.1 Conclusions 
 

For regularized AM, Newton’s method with the trust region modification is introduced to solve the 

decoupled image updating problem. The convergence of the method can be shown and in the sense 

of practical implementation, it reduces the chance of oscillations during the iterative updates. More 

importantly, this method can be readily implemented for a huge class of iterative algorithms and 

therefore has broad applications.  

 

When taking partial views with all detectors used, the FDK algorithm generates apparent artifacts 

when the number of views drops below the number of views needed theoretically. This result 

matches our analysis well. With approximately 1/29 of the detectors, the image quality with uniform 

pattern sampling using either unregularized or regularized AM is extremely bad. However, when 

using random pattern sampling, although unregularized AM generates salt and pepper noise, the 

regularized AM suppresses the noise well and generates images with high quality, which is almost 

comparable to the one using regularized AM with full data. This result is interesting because, based 

on the idea from CS that random sampling with low average sampling rate might be able to capture 

most of the information in the signal, we have experimentally shown that random sampling in the 

whole detector space with only 1/29 of the data, we are able to restore most of the details of the 

object. Notice that with only 1/29 of the detectors being used, our optimization goal is to recover an 

image with size 512 512 164 42991616    from measurements with size 

672 16 13920
5160960

29

 
 . Since the number of voxels to be estimated in the image is more than 

8 times the number of measurements, the optimization problem is underdetermined. However, the 

results are better than we naively expected.  
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This subsampling topic is a very attractive research topic because of the numerous potential dose-

reduction applications. To apply random pattern sampling to an X-ray CT system, one possible 

technique for reducing dose would be to add a random mask between the source and the patient to 

block some of the source-to-detector pairs and dynamically switch masks as the gantry rotates.  

 

4.2 Future work 
 

Newton’s Method with the trust region modification has been shown to be effective in solving many 

computational problems. However, the current version of Newton’s method is time-consuming. For 

a 512 512 164   image volume, approximately 8 seconds are needed for each update. Due to the 

fact that the AM algorithm for transmission tomography needs lots of updates to converge, a 

modification is needed to increase the convergence speed of the Newton’s method with the trust 

region.  

 

Disregarding detectors randomly is equivalent to disregarding rows in the system matrix. This 

process increase the randomness of the system matrix and therefore the CS theories apply here. 

Random pattern sampling is probably the most “random” case with our current CT system design. 

However, more work can be done here to find the best choice of parameters for the regularized AM 

algorithm. Moreover, consider a hypothetical imaging system that is even more sparse so that, for 

example, it has exactly one nonzero element in each row of the system matrix. This means 7/8 of 

the voxels cannot be estimated. The point here is that from the perspective of computing an 

iterative algorithm, the more sparse the system matrix is, the easier or faster we can compute the 

forward and backward projections. On the other hand, from the perspective of designing an imaging 

system to reduce dose, or more generally speaking, designing a sampling protocol that requires fewer 

samples, the system matrix is expected to be less sparse, so that it is possible to take even fewer 

measurements to recover a large image. So, for future work, a challenge could be how to design a 

CT system with a less sparse system matrix based on CS theories.  
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Appendix A 
 

This appendix shows the derivation of the regularized AM algorithm. It was shown in [6] and [22], 

but is included here as well for convenience.  

 

First, the  ( ) ( )c x c x   terms of the penalty function is decoupled. Due to the convexity of  , 

we have  

     
1 1

ˆ ˆ ˆ ˆ ˆ( ) ( ) 2[ ( ) ( )) ( ( ) ( )] 2( ( ) ( )) ( ( ) ( ) ,
2 2

c x c x c x c x c x c x c x c x c x c x                   

   
1 1

ˆ ˆ ˆ ˆ2 ( ) ( ) ( )] 2 ( ) ( ) ( )] .
2 2

c x c x c x c x c x c x          

Here, ˆ( )c  refers to the current image estimate.  

By plugging this surrogate into our objective function ( )R c and denoting the new objective function 

by ( )newR c , our goal is to solve 

( )[ ( ), | ( : ), ]
0.

(x) (x)

newR cI d y y q y c y

c c




 

 
   

We denote two backprojections, data backprojection and mean backprojection, as follows.  

(x) ( | ) ( ),
y

b h y x d y


  

ˆ ˆ(x) ( | ) ( : ( )),
y

b h y x q y c x


  

Following [1], we obtain the following equation.  

  ,

( )ˆ ˆ(x) (x)exp (x) ( ) (x) 0,
x

x x

x N

t
b b Z c x c

t


 






        

where ˆ ˆ2 (x) c(x) c(x ).t c     

HECTARE uses Newton’s method to solve this equation. The first derivative and second derivative 

are calculated for each Newton’s step using  

 

 
[ ( ), | ( : ), ] ˆ ˆ(x) (x)exp (x) ( ) (x) ,

(x)

I d y y q y c y
b b Z c x c

c





 
      
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 
[ ( ), | ( : ), ] ˆ ˆ(x) (x)exp (x) ( ) (x) ,

(x) (x)

I d y y q y c y
Z b Z c x c

c c

 

 

  
     

 
 

,

( )
,

(x) 1
x

new
x x

x N

R c t

c t




 







  

 
, 2

( ) 1
2 ,

(x) (x) 1x

new
x x

x N

R c

c c t




  




 
 

 
  

where ˆ ˆ2 (x) c(x) c(x ).t c      

Therefore, the overall updating steps in HECTARE for regularized AM can be written as 

 

 
 

(k)

,

(k 1) (k)

(k)

, 2

ˆ ˆ(x) (x)exp (x) ( ) c (x)
1

(x) c (x) ,
1ˆ ˆ(x) (x)exp (x) ( ) c (x) 2

1

x

x

x x

x N

x x

x N

t
b b Z c x

t
c

Z b Z c x
t

 


 










   
  

 
  
 






 

where k is the Newton’s updating iteration index and (k) ˆ ˆ2 (x) c(x) c(x ).t c     
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