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Abstract:  
 

A Traders Guide to the Predictive Universe- 
A Model for Predicting Oil Price Targets and Trading on them 

 

Jimmie Lenz 

 
At heart every trader loves volatility; this is where return on investment comes from, this is what 

drives the proverbial “positive alpha.”  As a trader, understanding the probabilities related to the 

volatility of prices is key, however if you could also predict future prices with reliability the 

world would be your oyster.  To this end, I have achieved three goals with this dissertation, to 

develop a model to predict future short term prices (direction and magnitude), to effectively test 

this by generating consistent profits utilizing a trading model developed for this purpose, and to 

write a paper that anyone with basic knowledge of markets and finance can readily understand.   

To address my first goal a well-quoted and tradable asset was required.  To create a model that 

traders can use to make money it needed to be volatile with significant short and longer-term 

price swings.  After some analysis, a review of macroeconomic impacts, and drawing in some 

part on experience, oil emerged as a fitting test, in particular Brent Crude Oil.  For simplicity, 

and to further my third goal, “Oil” as used within this paper will represent Brent Crude Oil 

unless otherwise specified.   

While some dissertations and other scholarly works set out to discern theoretical truths this 

dissertation is much simpler, this is all about the money.  Though I am certainly interested, as I 

am sure many traders are, in discovering the “Holy Grail” of how to trade any type of asset, the 

scope of my analysis will be confined to Brent Crude Oil prices within a sampling period of 

January 2002 thru May 2016.  The findings indicate that there are factors that are predictive of 
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the price of Oil and the research has allowed several conclusions.  These conclusions culminate 

in a model that consistently generates profitable long and short trading opportunities.   

The model created spans over 13 years, from January 2003 thru May of 2016, and achieves a 

trading success ratio (profit generation) exceeding 94% of the trades opened, with the successful 

per trade average return exceeding 6.5% and the majority of the trades held for less than 60 

calendar days (2 months) with an average holding period of 33 days for successful trades, 

exponentially larger than profits that might be realized by simply holding a single investment in 

Oil over the period of the analysis.  The data contained in the paper will provide the details on 

the construction of both the prediction model and development of a trading model, variables 

utilized, and results achieved.  The variables in this case are of significant interest and likely not 

as intuitive as might be expected.  Chen, Rogoff, and Rossi (2008) provide some direction, 

although commodity currencies are utilized, finding that “commodities tend to be less of a 

barometer of future conditions than are exchange rates.” 

It should be noted that the time period analyzed is the complete period for which some of the 

variable data is available; this period includes magnitudes of volatility rarely witnessed.  The 

reason for creating a model during such a challenging environment is that as a trader, we do not 

get to “cherry pick” dates that we would like to trade, but have to be equipped to deal with the 

dynamics of the marketplace. 

 

 

 

 

 



4 

 

Acknowledgements 

 

First and foremost I have to thank my wife Kim for her support, patience, and understanding 

during this program.  This has altered our lives in a number of ways, something neither of us was 

aware of at the outset, I truly will not ever be able to thank her enough.  My daughters, Caitlin 

and Kelsey and son-in-law James, have been persistent supporters, providing encouragement 

throughout and were constant cheerleaders, something often needed and much appreciated. 

Reid Tymcio, a fellow student for a portion of my time at Washington University and my son-in-

law was instrumental in the preparation of this paper, I can’t thank him enough for the time spent 

on his insight and critique, as well as his constant interest (feigned or not).   

The faculty at Washington University have been a pleasure to work with but none more so than 

Radha Gopalan.  Radha has spent an extraordinary amount of time during the preparation of this 

dissertation, but also prior to it in the classroom and out, it has truly been an honor to work with 

him.  The other committee members, Todd Milbourn and Guofu Zhou, have provided me with 

direction in this and other undertakings, for which I am in their debt. 

I’m not sure how to successfully acknowledge the Olin School for providing me this opportunity, 

I continue to be humbled by my inclusion in this institution and the association I have been 

afforded with the faculty and students whom are Olin.  Lastly I would be remiss if I didn’t thank 

a number of individuals that have made this the experience that it has been, among them: Anjan 

Thakor, Ohad Kadan, Hong Liu, Matt Ringgenberg, Phil Dybvig, Rich Ryffel, and Jim Horn. 

 

 

 



5 

 

Table of Contents 

 

Abstract ...........................................................................................................................................2 

 

Background ....................................................................................................................................7 

 

Approach to Predictive Mode...…………………………………………………………..……10 

 

Alternative to Out of Sample Testing………………………………………………………….17 

 

Trading Model…………………………..………………………………………………………19 

 

Development of the Trading Model to test the Predictions…………………………………..20 

 

Variable Analysis……………………………………………………………………………….23 

 

Testing Trading Model Performance………………………………………………………….25 

 

Conclusion………………………………………………………………………...…………….34 

 

Appendix 1…………………………………….…………………………………………….36-39 

 

Appendix 2………………………………………………………………………………………40 

 

Appendix 3……………………………………..……………………………………………41-44 

 

References…………………………………………………………………………………….…45 

 

 



6 

 

List of Charts and Illustrations 

Linear Regression of Logged Variables .....................................................................................12 

 

Durbin Watson Test .....................................................................................................................13 

 

Actual versus Predicted Prices Regression…………………………………………………....14 

 

Performance of Predicted Prices……………………..………………………………….…….16 

 

Predicted Price Consistency Test…..…………………………………………………….……17 

 

Three period Actual versus Predicted Regression……………………………………...…18-19 

 

Logged Univariate Regression……………………………………………………..……….23-24 

 

Performance of Trading Model “Noise” Rule………………………………………..……….26 

 

Performance of Trading Model……………………………………………….....…………….27 

 

Trading Model Consistency Test……………………………………………………………....29 

 

Sharpe Ratio’s…………………………………………………………………………………..31 

 

Passive Test of Trading Model…………………………………………………………………32 

 

 

 

 

 

 



7 

 

Background  

The volatility of the price of oil is not a recent phenomenon; a review of the history of oil prices 

reveals that volatility is a constant.  Oil is one of the most sought after commodities in the world, 

driving engines of growth and supporting, from both the supply and demand perspective, 

economies around the world.  Many think of Oil as just another commodity, and as a result, oil 

pricing is usually understood as conforming to the to the laws of supply and demand that date to 

Adam Smith, and that volatility in oil, therefore, must necessarily come from volatility in its co-

determinants, the supply and demand of oil. This belief is widespread, in the financial media it is 

not uncommon to see headlines that read, “Oil price down on inventory buildup, or “oil price 

surges after new, lower rig counts”.  The media is not alone as there are countless academic 

works that attribute pricing solely or primarily to the effects of supply and demand.1  However, 

given the general, and more recently the very volatile, price movement of Oil observed during 

the period analyzed from a high of $145.49 to a low of $23.74, and considering the inelasticity 

(supply and demand) there appear to be factors beyond simple supply and demand economics 

that must exist.   

To understand the factors that would provide a trader with the ability to predict price movements, 

to do so with a high degree of probability, and to make a profitable trading model from my 

investigation is the goal of the analysis.  While finding the variables may seem like the Holy 

Grail I have found that it’s a bit more straightforward; diligent analysis combined with a 

practitioners understanding of the markets.  As discussed previously an understanding of the 

predictive variables, and the reason behind them was key.  The approach taken was to utilize 

                                                 
1 For example, Dees, Gasteuil, Kaufmann, and Mann (2008) “Although a linear relationship could be a reasonable 

approximation under normal circumstances, extreme events may shift the market equilibrium between supply and 

demand towards different types of market functioning in which prices are much more sensitive to shocks than under 

normal conditions.” 
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historical data to create a model that “predicted” success based on realized “future” events, while 

in the real world this of course is not plausible sans a crystal ball, it would provide an 

understanding of the predictive variables and how they would be applied. 

The variables found to have the significant predictive quality have little to do with what we 

traditionally think of as Oil supply or demand, but instead are in large part driven by trade (in 

more general terms) and the valuation of different currencies.  Engel and West (2005), 

demonstrate that if nominal exchange rates indicate changes in economic conditions they should 

also be predictive of them.  The relationship between commodities, currencies, and interest rates 

has been explored and validated in several papers.  Akram (2009) found that “shocks to interest 

rates and the dollar are found to account for substantial shares of fluctuations in commodity 

prices.”  This notion of a dependency on currency valuation raised the question of whether Oil 

was in fact a type of currency in itself, one whose value is more associated with its buying power 

than with its intrinsic value as a commodity, a placeholder of value if you will.  This idea of a 

placeholder of value as well as a commodity is in need of additional analysis, but in actuality is 

more realistic than the value associated with sovereign currencies that have nothing more than 

faith backing them.  This relationship with currencies also addressed another aspect of the 

extreme short term volatility of Oil prices, and which may be better illustrated in light of the 

Efficient Market Hypothesis, simply that it should not occur if Oil prices observed were indeed 

the result of supply and demand.   

The variables utilized for this paper lead me to the conclusion that Oil might better be described 

as a placeholder of value, a quasi-currency.  The research involved in this paper focused on price 

prediction for trading purposes, however in the process of discovering the variables utilized an 

understanding of the forces that affect the price of Oil was necessary.  This process challenged 
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some notions about both Oil pricing in particular and possibly asset pricing in general.  This 

relationship was also found by Tang and Xiong (2008) in part that a significant correlation 

between non-energy commodities and oil after 2004, as well as changes in commodity prices that 

were in some part independent of supply and demand driven by emerging markets. 

Reports of macro supply and demand for Oil are primarily released and published monthly, with 

other types of economic releases, are often used to extrapolate likely supply and demand.  If the 

price of Oil was primarily dependent on supply and demand this periodically released 

information could never account for the daily volatility (exceeding 1.4% during the period 

analyzed) of prices in the marketplace, and certainly would not validate the EMH.  However, if 

the variables that are used to evaluate Oil in terms of EMH expectations are not related to supply 

and demand then there may be no need to discount the hypothesis.  The finding in this paper that 

currencies, which are highly liquid and volatile, are among the predictive variables with which to 

predict Oil prices then the EMH seems to hold true. This may be due to the fact that Oil prices 

are reflective of the market process of establishing exchange rate parities. 

Now that these relationships have been discovered the only question is if they can be used to 

make money, and if so how consistently.  This short term effect was found in Yan (2012) noting 

“that each increase in the dollar exchange rate by 1% drops the international price by 1.82%. 

The time frame utilized to create this predictive price model utilized data from January 2002 

until August of 2016, this difference between this time period and the model period tested 

accounts for the twelve months needed for the rolling coefficient calculation at the start, and the 

forward looking closing date high at the conclusion.  This difference will become more apparent 

as I discuss the predictive model.  The time frame contains all of the data available for some of 

the variables utilized in the model, making out of sample testing a bit more challenging.  I note 
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this limitation because this constraint will preclude certain out of sample testing, however, an 

alternative testing approach was devised and applied.2  

Approach to Predictive Model 

To achieve the goals set out at for this paper it was necessary to first develop a short term 

predictive price model.  The predictive model seeks to determine both the direction and 

magnitude of prices of Oil, again with a 12 month maximum time period but emphasizing the 

short term.  The predictive model that was developed utilizes a “rolling” twelve-month 

calculation approach to create coefficients based on the first trading day closing price of each 

month during the period analyzed.  Chen, Rogoff, and Rossi (2008) utilized a similar rolling 

model, however the model they employed used half of their data set, in this model I utilize a 

much smaller portion of the data set (less than 10%) in the “roll.”3  The coefficients for the 

rolling calculations were created using the least squares method to provide the regression 

coefficients for the best fit of the variables utilized.  These coefficients utilize the closing price 

and additional variables detailed later to predict the future short term price of Oil.  In this case, 

“future” is the maximum twelve months; during this period, every trade opened is closed.  If the 

price predicted was not reached during the twelve months following the opening of the trade, the 

trade would be closed at the closing price of the day preceding the date of the first anniversary of 

the trade opening.  It’s important to remind the reader that this twelve month limit is a realistic 

parameter for a trader, after which a trade must be closed.  Traders often operate in a “year-over-

year” mode that in effect is a twelve month rolling window, thus the findings that twelve month 

rolling coefficients provide significant predictive value may be intuitive to some readers.  While 

                                                 
2 The alternative will be described in detail and utilizes a method of testing different periods during the study to 

assess consistent performance, a measure of the models performance consistency. 
3 Although this paper is cited the idea of rolling calculations for trading applications is well documented in a number 

of sources and in practice. 
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a trader would likely also have a downside threshold, this is a constraint that I felt would mask 

the true results, and thus such a limitation was not applied.4 It is important to note that the tact 

taken is extremely conservative in other elements which very likely skew some of the results 

lower or even to losses in the analysis in order to highlight the true value of this approach.5 

The literature provides a good understanding of the type of variables that would likely contribute 

to the analysis and ultimately the model, although none of those reviewed in the available 

research were utilized for the same type of application as was being sought here.  Sadorsky 

(2000) shows that there is an equilibrium between different types of energy futures and a trade 

weighted index of exchange rates.  He also finds that exogenous shocks to energy futures can be 

manifested through these exchange rates.  This also validated the thought that the variables had 

to reflect the fact that to be predictive the analysis had to incorporate global influences.  The 

variables below were chosen and tested: 

MSCI Commodity Producers Index, used the closing monthly price for the entire period, January 

2002 thru July 2016 as reported on the last day of the month, this was lagged one month, 

essentially a single day. 

Real Trade Weighted U.S. Dollar Index: Major Currencies used the closing monthly price for the 

entire period, January 2002 thru July 2016 as reported on the last trading day of the month, this 

was lagged one month, essentially one day. 

The Closing Price of Brent Crude on the first Trading Day of the Month utilized the daily closing 

prices for the entire period, January 2002 thru July 2016. 

                                                 
4 Given the level of risk aversion following Dodd Frank the notion of a downside threshold for any type of trade has 

been institutionalized, however, this may provide a false sense of value in this analysis. 
5 Utilizing the arbitrary closing price of oil on the first day of the month in the analysis instead of high/low prices 

which may have been achieved intraday to open transactions. 
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Brent Crude Options and Commodity Aggregate Monthly Volume this utilized monthly 

Intercontinental Exchange (ICE) data for the entire period, January 2002 thru July 2016 and 

aggregates reported option and futures volumes, these are lagged one month. 

These variables were assessed using a linear regression. 

 

 

 

 

 

The outcome of this can be found below 

  Coefficients t Stat P-value 

Intercept 0.8831 3.9625 0.000112576 

Ln Commodity Producers 0.1708 4.0236 8.9128E-05 

Ln Real Dollar Weighted -0.5869 -5.9470 1.73023E-08 

Ln Closing Price 0.7316 22.8380 1.28788E-51 

Ln Futures Volume 0.0323 3.1454 0.001986812 

 

This predicted environment was based on historical values of the variables outlined, this allowed 

for the testing of various approaches utilizing actual prices, in particular the model utilized the 

future 60 day closing high price, observed in the data as my dependent variable.  The natural log 

of the Y and X variables and then regressed over the period analyzed. This approach yielded an 

R squared of 0.977 and an adjusted R squared of 0.954 with a P-value of 4.69E-89.  As you ca 

see, an adjusted R squared of 95% is nothing to scoff at, especially considering the idiosyncratic 
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shocks to the global financial system observed over this time frame.  It is reasonable to suspect 

that some of the explanatory power of this model may be coming from some autocorrelation in 

the data, so a Durban Watson test was performed to evaluate the level of auto correlation in the 

sample.  

The Real Statistics Durban-Watson test was utilized and analysis was conducted to test for 

autocorrelation using the following statistic: 

 

 
where the ei = yi – ŷi are the residuals, n = the number elements in the sample and k = the 

number of independent variables.  The results of the analysis can be found below: 

 

      
 
 
 
 
 
 
 
 
 
 
 
The findings that the D-stat = 0.550421 < 1.66418 = D-lower demonstrate there is significant 

autocorrelation.6 

The question of whether autocorrelation exists is clearly that it does and as a result the T scores 

are likely biased, but please keep in mind that the dependent variable is not really observable.  I 

                                                 
6 Durbin and Watson (1950, 1951) 

Durbin-Watson Test 

Alpha 0.05 

    

D-stat 0.550421 

D-lower 1.66418 

D-upper 1.78243 

significant yes 

http://i0.wp.com/www.real-statistics.com/wp-content/uploads/2014/01/image7158.png
http://i0.wp.com/www.real-statistics.com/wp-content/uploads/2014/01/image7158.png
http://i0.wp.com/www.real-statistics.com/wp-content/uploads/2014/01/image7158.png
http://i0.wp.com/www.real-statistics.com/wp-content/uploads/2014/01/image7158.png
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have already stated that the gauge by which my model will be judged is not by its explanatory 

power, or by its ability to divine the “actual” econometric factors underlying oil pricing, but in its 

ability to make money. If the model developed can be shown to perform, then I care not whether 

the standard errors are somewhat epistemically biased.  To better understand the impact of the 

analysis and resulting auto correlation a visual analysis of the predicted prices versus the actual 

was created.  The chart below provides a comparison of actual and predicted prices for the time 

period analyzed.  As an aside please note the dramatic changes in pricing for the period as well 

as the actual fit. 

 

This graphical representation illustrates the predictive ability of the model versus the actual 

prices observed in the data. 

At this point, the reasonable reader may still raise the point that these numbers are indicative of a 

problem that has not been addressed, but please keep in mind this model is utilizing a dependent 

variable that would not be possible to know in the real world, since the future 60 day high has 

not yet occurred.  The actual and predicted prices detailed in the chart confirm the choice of 

variables and their explanatory value.  The results of the approach yielded the following 

variables, approach, and coefficient calculation methodology.  Additionally the aforementioned 
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autocorrelation finding that resulted from the Durbin-Watson test may provide an increased level 

of confidence.  It should also be understood that with regard to securities autocorrelation still 

remains helpful in understanding relationships between prices.  Autocorrelation has also been 

found to illustrate momentum or certain pricing tendencies for securities.  This momentum will 

be addressed in the second model developed for trading.  However, the tests on actual 

performance, that is dollars and cents, are the most robust test a trader is motivated by. 

Illustration 1 below provides additional details to illustrate the success of the approach outlined 

for the predictive model described.  The transactions illustrated reflect both long buys and short 

sells, returns reflect none of the transaction costs or spreads that might be incurred by an investor 

executing these transactions.  While these costs can be a factor in overall return of investments, 

as recently shown in Frazzini, Israel, and Moskowitz (2012) these costs are much lower than has 

traditionally been accounted for in academic literature and are dependent on factors (e.g. type of 

trading entity) that this paper does not distinguish between. 

The variables are used to create the rolling twelve-month coefficients described previously and 

similar to those described in Chen, Rogoff, and Rossi (2008).  The calculation of the coefficients 

was achieved by utilizing the below returning statistical information on the line of best fit, 

through a supplied set of x- and y- values. 

The basic statistical information returned is the array of constants, mn, mn-1, ... , b for the equation: 

y = m1x1 + m2x2 + ... + b 
 

Where the constant “b” is treated normally. 

 

The equation for best line fit uses the least squares method to calculate the line of best fit for the 

set of y- and x- values, given there are multiple ranges of x-values, the line of best fit satisfies the 

equation above.   
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Where, 

 the x's are the independent variable ranges; 

 y is the dependent variable; 

 the m's are constant multipliers for each x range; 

 b is a constant. 

 
The above is the basis for the LINEST function within Microsoft Excel which is utilized in the 

model to calculate the coefficients from which the predictive prices are created. 

The result of the analysis being used to create the predictive model is found in Panel 1 below.  

This applies no trading rules and illustrates the “raw” results of the coefficients described 

previously.  As this model emphasizes short term trades, always preferable for a trader, the fact 

that over half of the trades are opened and closed in less than 2 months and almost ¾ within six 

months is significant, note that the returns shown are not annualized.  Trades not opened were 

due to anticipated price changes of less than 1%.7 

Illustration 1 

 

                                                 
7 Instances that did not achieve the target price within the twelve month period were “closed” at the closing price the 

day prior to the 1 year anniversary. 

Closing trade 

period

0-60 Days 61-180 Days 181-360Days

Did not 

return a 

profit

No Trade 

Executed

Number of 

months
81 31 14 15 20

% of Months 54.73% 20.95% 9.46% 10.14% 13.51%

% of Trades 

Executed
63.28% 24.22% 10.94% 11.72%

Average 

Return per 

trade

6.20%

Return for 

non-loss 

Trades

6.94%

There are 161 (n=161) data points observed, from January of 2003 through May 2016.  Of the 161 

months in the analysis the price predicted was achieved about 88% of the time within twelve 

months, 20 months had a predicted return of less than 1% and no trade was opened, the detailed 

distribution is shown below.  
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Alternative to Out of Sample Testing of the Model 

The previous sections provide insight into the goals and results of the model that was used to test 

the variables and the methodology that have been applied to create the predictive pricing model.  

As noted previously an out of sample test is not possible due to the inclusion of all available data  

for some variables, as an alternative the analysis was divided into three concurrent time series in 

order to judge the consistency of the model from period to period across the entire span of time 

incorporated.  Illustration 2 below illustrates the performance in terms of returns that resulted in 

a profit, losses and months in which no trades were undertaken were excluded. 

Illustration 2 

In order to understand the consistency of the approach to predict 
price targets an analysis of equal but separate time periods was 
conducted to illustrate the value of this approach during various 
economic and political cycles.  

        

Time periods 
1/2003-
11/2006  

12/2006-
7/2011  

8/2011-
5/2016 

        

Months 
Achieved 

42  42  42 

        

Average Yield 6.97%   7.33%   6.50% 

 

As the data in the panel illustrates the yield throughout the different periods appears to remain 

relatively consistent.  The second period (P2) is characterized by Federal Reserve actions, 

notably the “Quantitative Easing” programs, that I believe skews the yield somewhat accounting 

for what may be viewed as an inconsistency.8  The effect of interest rates on prices of Oil may 

                                                 
8 The Federal Reserve Bank actions following the Financial Crises resulted in a 1 year Treasury rate fluctuation 

from a high of 4.91% to a low of 0.12% during the second period (P2) as sourced from Factset. 
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seem intuitive, but are well documented in Grisse (2010) “We also find the Dollar depreciation is 

associated with higher Oil prices in the short run.  US short-term interest rates explain much of 

the long-run variation in Oil prices and the Dollar exchange rate.” 

The actual versus the predicted are found for each period below to better illustrate the points 

made here. 

   Period 1/2003-6/2007

 

Period 7/2007-12/2011 
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Period 1/2012-7/2016

 

 

These three charts illustrate the performance of the model that was used to create the working 

predictive model; they also illustrate the aforementioned volatility, in particular during the 

second and third periods. 

A detailed spreadsheet of the Predictive Price Model can be found in Appendix 1 provides an 

example of elements involved in the calculations. 

Trading Model  

As discussed the ability to test, and in the case of a trader, utilize the predictive model is 

dependent on real world application in a trading environment.  In the real world capital is at risk, 

both when trades are opened as well as when they are not,  thus developing a trading model 

required the implementation of certain rules that would insure the test was both objective and 

realistic.  The model developed for trading utilizes two predictive prices, which will be referred 

to as predictive price A (𝑃𝑎) and predictive price B(𝑃𝑏), this is the predicted future price that 

will be reached within 12 months, and optimally sooner.  The “current price” is the closing price 

of the first trading day of the month.  The model facilitates trading in a straightforward fashion 

that provides a trader with all of the information needed.  If the 𝑃𝑎 is at least 1% higher than the 
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current price this is a signal for a long buy opening trade.  If the 𝑃𝑎 is at least 1% lower than the 

current price this signals a short sell opening trade.  If less than a 1% price movement is 

predicted no transaction will be initiated.  If the 𝑃𝑎 is achieved within the first two months the 

trade is closed at that price.  If the trade is not closed within the first two months 𝑃𝑎 is adjusted to 

the original models 60-day look forward methodology is applied and 𝑃𝑏 becomes the new target 

price at which the trade will be closed.  If a trade is not closed within 12 months, the trade will 

be closed at the closing price on the day preceding the date of the first anniversary of the opening 

of the position.9 

 

Development of the Trading Model to test the Predictions 

Variables 

While the success of the predictive pricing model was promising, in order to put the findings that 

resulted into a working model that a trader could use and profit from, there were changes that 

have to be made.  The most significant change that is necessitated involves the dependent 

variable used, the forward looking 60 day closing high is replaced with the previous 40 day high 

price for the calculation of 𝑃𝑎 at which a trader must decide on whether or not to open a position.  

The sixty day high price is incorporated into the first 10 of the 12 months rolling calculation, 

since this is historical in nature.  𝑃𝑏 is calculated two months following the original calculation 

of 𝑃𝑎 when the 60 day closing high becomes available.  Both of these factors are important to the 

development of the working model. 

The replacement of the dependent variable is primary in developing a model that would match 

the performance of the predictive price model.   

                                                 
9 Instances in which 𝑃𝑎and 𝑃𝑏 provided conflicting buy long/sell short signals maintained the initial target 𝑃𝑎 but 

were otherwise treated as any other transaction. 
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The complete replacement of the dependent variable is a problem when calculating the two most 

current consecutive months; remember this variable is the 60-day forward-looking closing high 

price.  In the 12 month rolling calculation months 1 – 10 will employ the high for the following 

60 days, as this has proven most effective in the testing and performance of the model.  The 

problem lies in months 11 and 12 (the most current month), which will “roll” the next month, 

such that the current month 12 will next month become month 11.  This idea of utilizing a 

previous months volatility, in our case the result of which is the predicted price, was explored by 

Moreira and Muir (2016) finding there was a “strong relationship between lagged volatility and 

current volatility.” 

The approach found to be most effective is to utilize the previous 40 day high as the dependent 

variable for months 11 and 12 respectively with which to calculate the coefficient used for the 

calculation of the 𝑃𝑎.  As previously mentioned 𝑃𝑎is captured in the model at this point and 

utilized for the current and following month as the target price. 

A description and discussion of the independent variables used in both models are below.  

The closing price of Oil on the first trading day of the month is straightforward and utilized in 

both models as a part of the coefficient calculation for the particular month as well as for the 

predicted price calculation (sourced from Factset). 

The Futures/Options variable is the aggregated traded volume reported by the Intercontinental 

Exchange (ICE).  Because options on Oil futures represent single contracts, the aggregation 

provides a more complete picture than futures alone.  These volumes are reported at the end of 

the month, this allows for a total number to be used the following month, which is in actuality to 

next trading day. 
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The variable Real Trade Weighted U.S. Dollar Index: Major Currencies; is produced by the 

Board of Governors of the Federal Reserve System (US).  This index is a weighted average of 

the foreign exchange value of the U.S. dollar against a subset of the broad index currencies that 

circulate widely outside the country of issue.  Major currencies index includes the Euro Area, 

Canada, Japan, United Kingdom, Switzerland, Australia, and Sweden.  This is produced monthly 

allowing for the result of the previous month to be applied the following trading day in the 

model. 

The MSCI AC World Commodity Producers Index captures the Global opportunity set of 

commodity producers in the energy, metal, and agricultural sectors.  Nine of the top ten 

constituents are in the energy sector, comprising over 68% of the index. Country weightings are 

primarily the United States, United Kingdom, Canada, Australia, and France. 

A detailed regression analysis of the variables is located in appendix 2. 

As noted similar variables have been employed in other papers seeking to understand energy 

price relationships, e.g. Sadorsky (2000).  Specifically as related to currencies, in this case the 

US Dollar, Bloomberg and Harris (1995) noted a correlation to multiple commodity indexes.  

While I have used a dollar index in this research, I have also illustrated the value of a global 

producer price index that takes into account those factors that will affect currencies and thus the 

price of Oil expanding on Akram (2009) findings that related higher oil prices to a weaker US 

Dollar.   
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Variable analysis 

A simple linear regression analysis of the individual variables was conducted to understand the 

value versus that of the multivariate approach utilized in the predictive model.  The results of the 

individual variables can be found in the charts below along with the 𝑅2 values. 
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The significant 𝑅2 and line fit of the Closing Price variable, while somewhat intuitive provided 

raised questions concerning the predictive nature, and how this might be realized in actual 

trading situations.  As observed in the data the price of Oil is extremely volatile over a variety of 

time periods.  As such a question that must be addressed, is it possible that the predictive model 

is just capturing gains by happenstance, those that would naturally have been captured by a 

passive investor employing a short term strategy?  After all since the long-term trend in the Oil 

price data has been positive, it makes sense that a buy-and-hold strategy, on average, would 

make money over time regardless of when it was bought and sold.  To test this theory a short 

term, ninety days, passive strategy was constructed utilizing historic pricing information. In 

order to minimize any possible bias the strategy would have no rules beyond a set time frame in 

which trades would be opened and closed.   

The strategy established an “opening” trade at the closing price on the first trading day of the 

month, exactly as employed by the predictive model.  Unlike the predictive model the passive 

strategy would “close” the trade three months later, again at the closing price of the first trading 

day of the third month following the opening, the difference in the price would then be used to 

calculate the return. 

(𝒕𝟏 − 𝒕𝟒)/𝒕𝟏 
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The cumulative return of -16.48 was calculated for the complete time of the analysis, January 

2003 thru May 2016, so that the time frame replicated that of the predictive model.  Clearly the 

predictive model outperformed a passive short term buy and hold strategy.  The detailed results 

can be found in appendix 3. 

 

Testing Trading Model Performance 

Like any trading model the complete environment must be taken into account, this includes flags 

for trades should not be opened due to an unreasonably low predicted yield and/or in which 

momentum may skew the prediction.  The issue of unreasonably low predicted yields, in this 

case less than 1%, is relatively easy to address the trades are simply not opened as the risk 

reward is not justified. The second problem is well understood in trading circles and is often 

characterized as trying to “catch a falling knife.”  This notion of equilibrium control is articulated 

in Spiegel (1996) “an equilibrium change may require simultaneous control over the trading 

environment.” 

In order to avoid those trades in which the predicted price is obscured by adverse momentum 

systematic rules were required.10  These variables and the associated percentage movements 

were designed to filter out “noise” and identify actual momentum events, when the noise is 

identified by the rule no trade is implemented.  The percentages were identified by taking the 

percentage changes for each variable for each month, squaring these, and then taking the square 

root to find the absolute changes.  The standard deviation was then calculated to provide 

                                                 
10 Detecting those instances required a working understanding of the variables and the nuances, the rules used are as 

follows; Monthly increase in day one closing price by 103% of the previous month, 102% change in 𝑃𝑎 over the 

previous month high, Monthly day one close that is 104% of previous month high, and a month over month average 

price change of 117%. 
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additional direction and testing parameters. The results of the rules impact on the overall 

performance of the model, the results are found in Illustration 3 below. 

The ability of the model to detect this noise, along with the ability to provide short sell (as well 

as buy long) signals is significant.  As Moreira and Muir (2016) found in their analysis by 

“cashing out” in the Fall of 2008 was the correct move when the popular view was that of a 

buying opportunity, in a similar approach our signals provided short selling and trade avoidance 

opportunities, making money on the short sells and avoiding losses in trades avoided. 

Illustration 3  

The results of the systematic rules constructed to detect 
those predicted prices that may be overly affected by 
momentum and to alert the trader not to open these 
trades are found in this chart. 

            

Losses avoided 7 
     

   
     

Average Loss Averted 40.8% 
     

   
     

False positives 8 
        

 

The 8 losses averted with average declines exceeding 40%, which significant to the trading 

models performance.11  Indeed, these results somewhat validate the old trader’s adage to “never 

try to catch a falling knife.” If you did try to catch a falling knife in Brent Crude over the time 

period, you’d have lost your shirt.   

                                                 
11 Declines of this magnitude, depending on the financial instrument used, would likely violate company risk limits 

and a traders sensibility and thus even if not averted with such a rule would have been mitigated. 
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The objective for developing the model is to make profits, the preceding information provides 

the necessary background on how the model was developed and tested, but the proof is in the 

profits.  The Illustration below provides insight into the actual performance of the model over the 

period analyzed. 

Illustration 4  

There are 161 data points observed, from January of 2003 through May 2016.  Of the 161 
months in the analysis the price predicted was achieved about 94% of the time within twelve 
months, 36 months had a predicted return of less than 1% or the momentum rule was 
triggered and no trade was opened, the detailed distribution is shown below.   

                    

Closing trade 
period 

0-60 
Days 

  
61-180 
Days 

  
181-
360Days 

  

Did not 
return a 

profit   
No Trade 
Executed 

       
 

 
   

Number of 
months 

81  27  11 
 

7 
 

35 

       
     

% of Months 50.31%  16.77%  6.83%  4.35%  21.74% 

            

% of Trades 
Executed 

64.29%  21.43%  8.73%  5.56%    

            

Average 
return 

5.29%   8.76%   11.06% 
  

-18.09% 
    

            

Average 
Return per 
trade 

6.61% 

   

Return 
including 
losses  

5.24% 

   

                    

 

 

While the panel results are impressive, the extreme market volatility during this period including 

the Financial Crisis, the Oil route, and of course the resulting Federal Reserve Bank and 

European Central Reserve makes it even more so. 
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The average holding period for all successful trades (long and short) was 33 days.  The shortest 

period was a single day and the longest, with the exception of the forced closures at 12 months, 

was 218 days, the holding period has a standard deviation of 42 days.   

Because the model facilitates both long and short positions the question of holding both a long 

and short at the same time must be addressed.  This occurs only once during the time of the 

analysis in March of 2009, when the previous months long position is still open.  If the long 

position were to be closed out it would have resulted in a loss of less than 1% instead of a gain 

exceeding 23%.  The notion of a long and short position in the same security (shorting against 

the box) is an established concept in trading, albeit rare.  In short this single position would have 

de minimis impact on the overall performance. 

The model’s performance was also evaluated in terms of losses realized to understand the totality 

of “drawdowns” that may have occurred during rolling twelve month periods throughout the 

entire period analyzed.  To accomplish this a theoretical investor with $1,000,000 to invest in the 

strategy was utilized.  All profits were returned to the portfolio such that 1/12 (.08333) of the 

current portfolio balance was reinvested for the month, with the balance reflecting gains or losses 

when they were realized.  The reason that only 1/12 of the balance was invested is that the 

portfolio positions could be held up to 12 months necessitating funds be available to consistently 

invest.  Again the complete time frame from January 2003 thru May of 2016 was analyzed for 

portfolios drawdowns, applying the trading rules discussed previously to insure consistency. 

The most significant result of the test was a drawdown realized on September 1 of 2015 for 

$71,120, at this point the theoretical $1,000,000 portfolio had a balance of $1,617,883 prior to 

the realization.  This loss was related to a single trade opened 12 months earlier and subject to 
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the forced closure rules established for the trading model.  It is also the largest loss in any rolling 

twelve month period of the analysis.   

As in the test model out of sample testing is difficult given that the data utilized to construct the 

model incorporates almost the entire period for which variable information is available.  

Therefore, a test was conducted to compare three consecutive periods with a similar number of 

months (42, 42, 43) in which trades were executed.  The purpose of this test was to understand 

the consistency of the predictive ability of the model, and most importantly the performance of 

the model.  The return performance is detailed in Illustration 5 below, the risk free rate is 

provided as context.  While the context of the risk free rate is important as a basis of comparison 

between the periods, it would likely be viewed in a different light by a trader tasked with this 

particular asset class. Within the time of the analysis Treasury rates fluctuated significantly in 

very short periods of time, this is particularly the case within the second period which 

experienced rate fluctuations from 4.93% to 0.10%.  I believe this rather significant movement 

accounts for what may be viewed as an inconsistency in the second period. 

The “trade blotter” in the appendix provides the complete details of the individual transactions 

that make up the panel data in illustration 5 as well as the associated variable values on the days 

in which the transactions were undertaken. 
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Illustration 5 

In order to understand the consistency of the approach to predict 
price targets an analysis of equal but separate time periods was 
conducted to illustrate the value of this approach during various 
economic and political cycles.  To provide a bit more context the 6 
Month US Treasury Constant Maturity Yield is included as a risk 
free rate benchmark, the fluctuations in this rate throughout 
some of the periods are significant. 

            

Time period 1/2003-
5/2007  

6/2007-
11/2011  

12/2011-
5/2016 

        

Months 
Reviewed 

42  42  43 

        

Average 
Return per 
Trade 

6.28%  5.88%  3.80% 

        

Risk Free Rate 
2.79%  0.85%  0.17% 

        

Return net of 
RFR 

3.490%   5.030%   3.630% 

            

Months with 
losses 

0   2   5 

 

Sharpe Ratio 

This would not be complete without some measure of the risk and return profile of the 

investments undertaken through the trading model.  .  The approach was to take the return 

generated over the holding period of the trade and then to invest in the risk free asset for the 

balance of a one year holding period.  The purpose was to provide a consistent basis of 

comparison with which to evaluate using the Sharpe Ratio.  In this case the risk free asset 

utilized was the 1 year US Treasury Constant Maturity. Such that: 
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𝐴𝑟+ 𝑅𝑟
𝑓1/ (365/(365-(T-t

1
)) 

Where, 

 𝐴𝑟 is the return on the asset 

 𝑅𝑟
𝑓
 is the risk free rate, the continuous maturity 1 year Treasury 

 T-t
1   the difference between trade opening and closing dates, the holding period 

 

I have mixed feelings in addressing this question, as an energy trader has few options other than 

trading energy, or even more specifically if Oil trading is the sole purview of the trader.  

However, to provide some context to this question the Sharpe ratio     

                                             
𝑟𝑝−𝑟𝑓

𝜎𝑝
 

was calculated for each complete year and the portion of 2016 included in the analysis.  The 

results of this analysis can be found in the chart below. 
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Illustration 6 

Year Risk Free 
Rate 

Average 
Return 

Excess 
Return 

2003 0.0124 1.0917 0.0792 

2004 0.0193 1.0882 0.0689 

2005 0.0369 1.1173 0.0805 

2006 0.0494 1.0900 0.0406 

2007 0.0445 1.0776 0.0331 

2008 0.0172 1.0279 0.0107 

2009 0.0048 1.0892 0.0844 

2010 0.0031 1.0656 0.0625 

2011 0.0018 0.9984 -0.0034 

2012 0.0018 1.0783 0.0766 

2013 0.0013 1.0330 0.0317 

2014 0.0013 0.9449 -0.0564 

2015 0.0033 1.0503 0.0470 

2016 0.0058 1.1480 0.1422 

      

  Average  0.0498 

  Standard Deviation 0.047325 

  Sharpe Ratio 1.052869 

 

Alternative to Out of Sample Testing the Trading Model 

Like the passive test used to validate the predictive model, a test of the trading model was needed 

to understand the value of the trading model, in other words was the success of the predictive 

model primarily related to the trading model.  In order to insure the test had no new bias that 

might influence the outcome the exact same rules utilized previously were applied to this test, 

with of course the exception of the target prices.  To keep this as straightforward as possible a 

simple 5.24% increase (the average gain realized in the trading model) of the opening trade price 

was used in place of the predicted price.  After a trade is opened, again at the closing price on the 

first day of the month, the predicted price (𝑃𝑐) is now the closing price on the first day on the 

month (𝑇𝑝) multiplied by 105.24%,  
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  𝑃𝑐=𝑇𝑝*105.24 

𝑃𝑐 is the target price at which a trade is closed.  The outcome can be viewed in the chart below. 

Illustration 7 

In order to understand the consistency of the trading model 
an analysis of equal but separate time periods was 
conducted to illustrate the value of the model using passive 
target prices based on a 5.24% increase in the opening 
price, during various economic and political cycles.  To 
provide a bit more context the 13 week Treasury rate 
average for the period is included as a risk free rate 
benchmark. 

            

Time 
periods 

I  II  III 

        

Average 
Yield 

5.08%  2.87%  -1.41% 

        

Risk Free 
Rate 

2.79%  0.85%  0.17% 

        

Net of 
Risk Free 
Rate 

2.29%   2.02%   -1.58% 

 

As the analysis in the chart illustrates not only are the returns utilizing a buy-and-hold strategy 

much lower than those utilizing the predicted pricing models and in one period the average yield 

was a loss.  Given the results the trading model and the simple rules associated with it cannot be 

deemed the cause of the extraordinary results detailed in Illustration 4.  

The results presented would not be complete without a risk adjusted return context in which to 

view them.  However, given the nature of this this paper as that of a tool for a trader, an 

appropriate measure is challenging.  In reviewing the literature much is concerned with specific 

instruments (e.g. futures) as detailed by Pagano and Pisani (2009) or as an “inflation insurance” 
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as in Amenc, Martellini, and Ziemann (2009), neither of these approaches seemed appropriate 

given the instrument specificity and purpose.  Applying an approach borne out of practical 

experience appeared to provide a better, and more realistic measure. 

As a trader, the focus of this work, the environment that can be traded is very often limited by 

industry, capitalization, or some other parameters.  Traders, portfolio managers and other 

investment professionals will usually specialize in certain sub-groups.  As such a relative 

measure would need to be limited to those alternative investments available to an oil trader.    

 

Conclusion 

As was the intent of this paper I have successfully designed a model to predict price targets for 

Brent crude Oil in short term scenarios through the use of a multivariate model.  The model has, 

in part, illustrated the findings of other academic papers, but has also advanced the practical 

application of this work.  By utilizing a “passive” pricing approach the value of the predictive 

model has been shown to be valid.  But as I stated at the outset the true bar of success was that of 

a trader’s perspective, could the model make money, in the real world and not in a finance 

laboratory.  The testing of the model in a trading environment provided an other than perfect 

world laboratory in which to apply the predictive prices and to demonstrate the predictive models 

success.  A trading model was constructed, rules established and the predicted prices put to the 

test.  The trading model not only made money, with successful transactions returning over 6.5% 

on average within 6 months, but did this in a number of different economic cycles.  This is 

particularly significant because the predictive model, substantially outperforms a buy-and-hold 

strategy, both over the entire period, as well as over the period in which Oil prices experienced 

substantial declines.  The consistency with which the model operates in the trading environment 
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validates the consistency that is required in a real trading environment, and it should be noted 

this was over a period exceeding 13 years.  This period is marked not only by the financial crisis 

but also by huge levels of both short and long-term volatility in the underlying asset being 

analyzed.  From the outset the objective of this paper was to make money, and while there are 

certainly other statistical measure that can be used to judge the success of such model, the 

“profits” generated in this case are the best indicator of the performance of both the predictive 

and trading models. 
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Appendix 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date
MSCI 

COMMODITY 

PRODUCERS 

Index 

(Lagged)

Real Trade 

Weighted 

U.S.  Dollar 

Index 

(Lagged)

Closing 

Price on 

first of 

month

Futures 

volume 

(Lagged)

Predicted 

Price a

Predicted 

Price b

Return 

Predicted 

Price a

1/2/02 1332.03 114.117 19.9 1256602 4.06E-06 0.209597 -0.31728 -0.00615 59.31014 22.9879268 24.1865267 0.1551722

Coefficients
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Appendix 2 

 

 

 

 

 

 

 

 

Regression Statistics:    Model 1 for Ln_1_60_Day_High    (4 variables, n=173)

R -Squared A dj.R -Sqr. Std.Err.R eg. Std. D ev. #  C ases #  M issing t(2.50%,168) C o nf. level

0.980 0.980 0.069 0.481 173 0 1.974 95.0%

Coefficient Estimates:    Model 1 for Ln_1_60_Day_High    (4 variables, n=173)

Variable C o eff icient Std.Err. t -Stat . P -value Lo wer95% Upper95% Std. D ev. Std. C o eff .

Constant 2.025 0.587 3.447 0.001 0.865 3.184

Ln_Close 0.735 0.035 20.720 0.000 0.665 0.805 0.507 0.774

LN_Producers 0.167 0.043 3.870 0.000 0.082 0.252 0.290 0.100

Ln_Real_Trade -0.559 0.114 -4.898 0.000 -0.785 -0.334 0.096 -0.112

Ln_Volume 0.026 0.011 2.449 0.015 0.005034 0.047 0.806 0.043
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Appendix 3 

 Closing Price 
(t-t3)/t 

Return 
on $100 

1/2/03 30.64  -0.11195 88.80548 
2/3/03 32.5  -0.26954 64.86899 
3/3/03 33.29  -0.20757 51.40414 

4/1/03 27.21  0.025726 52.72656 

5/1/03 23.74  0.203033 63.43178 
6/2/03 26.38  0.058757 67.15882 

7/1/03 27.91  0.011465 67.92882 
8/1/03 28.56  -0.02486 66.24012 
9/2/03 27.93  0.008235 66.7856 

10/1/03 28.23  0.061637 70.90203 

11/3/03 27.85  0.056373 74.89902 
12/1/03 28.16  0.132813 84.84655 

1/2/04 29.97  0.074074 91.13148 
2/2/04 29.42  0.121686 102.2209 
3/1/04 31.9  0.222571 124.9723 
4/1/04 32.19  0.045045 130.6016 
5/3/04 33  0.26303 164.9538 

6/1/04 39  0.054359 173.9205 

7/1/04 33.64  0.376338 239.3734 
8/2/04 41.68  0.163388 278.4841 

9/1/04 41.12  0.114543 310.3824 
10/1/04 46.3  -0.13823 267.4786 
11/1/04 48.49  -0.06104 251.1508 
12/1/04 45.83  0.093389 274.6054 

1/3/05 39.9  0.347118 369.9258 
2/1/05 45.53  0.117725 413.4751 
3/1/05 50.11  0.006586 416.1981 
4/1/05 53.75  0.038884 432.3814 
5/2/05 50.89  0.166044 504.1759 
6/1/05 50.44  0.335052 673.1009 
7/1/05 55.84  0.13485 763.8682 

8/1/05 59.34  -0.01618 751.5104 

9/1/05 67.34  -0.19142 607.6588 
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10/3/05 63.37  -0.08222 557.6998 
11/1/05 58.38  0.132922 631.8305 
12/1/05 54.45  0.125069 710.8528 

1/3/06 58.16  0.142194 811.9317 
2/1/06 66.14  0.109314 900.6869 

3/1/06 61.26  0.148057 1034.04 
4/3/06 66.43  0.101611 1139.11 
5/1/06 73.37  0.013493 1154.48 
6/1/06 70.33  0.000142 1154.644 
7/3/06 73.18  -0.15195 979.1914 
8/1/06 74.36  -0.21436 769.2894 
9/1/06 70.34  -0.09312 697.6539 

10/2/06 62.06  -0.0253 680.0046 
11/1/06 58.42  -0.03458 656.4919 
12/1/06 63.79  -0.04264 628.4991 

1/3/07 60.49  0.102662 693.0219 
2/1/07 56.4  0.207447 836.787 
3/1/07 61.07  0.110201 929.0022 
4/2/07 66.7  0.061019 985.6894 

5/1/07 68.1  0.123642 1107.562 
6/1/07 67.8  0.082006 1198.388 
7/2/07 70.77  0.133107 1357.902 
8/1/07 76.52  0.163879 1580.434 
9/4/07 73.36  0.208288 1909.619 

10/1/07 80.19  0.175957 2245.63 
11/1/07 89.06  0.028296 2309.171 

12/3/07 88.64  0.133687 2617.877 

1/2/08 94.3  0.094168 2864.396 
2/1/08 91.58  0.231164 3526.542 

3/3/08 100.49  0.268783 4474.416 
4/1/08 103.18  0.373425 6145.275 
5/1/08 112.75  0.112106 6834.2 
6/2/08 127.5  -0.12549 5976.575 

7/1/08 141.71  -0.32101 4058.048 
8/1/08 125.39  -0.50355 2014.622 
9/2/08 111.5  -0.52924 948.4083 

10/1/08 96.22  -0.58273 395.7451 
11/3/08 62.25  -0.2612 292.3746 
12/1/08 52.49  -0.12993 254.3865 

1/2/09 40.15  0.216438 309.4455 

2/2/09 45.99  0.10698 342.5499 

3/2/09 45.67  0.433983 491.2107 
4/1/09 48.84  0.435504 705.1348 
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5/1/09 50.91  0.374975 969.543 
6/1/09 65.49  0.073904 1041.197 
7/1/09 70.11  -0.04593 993.3766 
8/3/09 70  0.092714 1085.477 
9/1/09 70.33  0.099957 1193.978 

10/1/09 66.89  0.169682 1396.574 
11/2/09 76.49  -0.05779 1315.873 
12/1/09 77.36  -0.00414 1310.43 

1/4/10 78.24  0.049208 1374.913 
2/1/10 72.07  0.213681 1668.706 
3/1/10 77.04  -0.0305 1617.804 
4/1/10 82.09  -0.08003 1488.325 

5/3/10 87.47  -0.11787 1312.897 
6/1/10 74.69  0.012719 1329.596 
7/1/10 75.52  0.080111 1436.112 
8/2/10 77.16  0.077372 1547.226 
9/1/10 75.64  0.145426 1772.233 

10/1/10 81.57  0.142577 2024.912 
11/1/10 83.13  0.198605 2427.069 

12/1/10 86.64  0.297899 3150.092 
1/3/11 93.2  0.254185 3950.796 
2/1/11 99.64  0.260036 4978.146 
3/1/11 112.45  0.037172 5163.194 
4/1/11 116.89  -0.04064 4953.38 
5/2/11 125.55  -0.06993 4606.979 
6/1/11 116.63  -0.01895 4519.682 

7/1/11 112.14  -0.07883 4163.395 

8/1/11 116.77  -0.06431 3895.629 
9/1/11 114.42  -0.03242 3769.315 

10/3/11 103.3  0.040852 3923.299 
11/1/11 109.26  0.022241 4010.555 
12/1/11 110.71  0.106585 4438.019 

1/3/12 107.52  0.146577 5088.532 

2/1/12 111.69  0.068762 5438.429 
3/1/12 122.51  -0.15786 4579.893 
4/2/12 123.28  -0.22713 3539.684 
5/1/12 119.37  -0.11267 3140.85 
6/1/12 103.17  0.115828 3504.649 
7/2/12 95.28  0.18178 4141.725 
8/1/12 105.92  0.031911 4273.891 

9/4/12 115.12  -0.03614 4119.449 

10/1/12 112.6  -0.01918 4040.425 
11/1/12 109.3  0.052882 4254.091 
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12/3/12 110.96  0.010094 4297.031 
1/2/13 110.44  -0.00779 4263.57 
2/1/13 115.08  -0.10306 3824.171 
3/1/13 112.08  -0.09636 3455.675 
4/1/13 109.58  -0.06133 3243.756 

5/1/13 103.22  0.033811 3353.431 
6/3/13 101.28  0.128456 3784.199 
7/1/13 102.86  0.050068 3973.666 
8/1/13 106.71  0.023334 4066.389 
9/3/13 114.29  -0.03106 3940.082 

10/1/13 108.01  0.027035 4046.6 
11/1/13 109.2  -0.01969 3966.928 

12/2/13 110.74  -0.01716 3898.866 
1/2/14 110.93  -0.02975 3782.881 
2/3/14 107.05  0.010462 3822.459 
3/3/14 108.84  0.008912 3856.525 
4/1/14 107.63  0.046455 4035.682 
5/1/14 108.17  -0.02099 3950.991 
6/2/14 109.81  -0.06457 3695.891 

7/1/14 112.63  -0.14525 3159.047 
8/1/14 105.9  -0.19518 2542.451 
9/2/14 102.72  -0.29614 1789.517 

10/1/14 96.27  -0.41436 1048.021 
11/3/14 85.23  -0.41863 609.2859 
12/1/14 72.3  -0.14924 518.3565 

1/2/15 56.38  -0.03051 502.5428 

2/2/15 49.55  0.294248 650.4152 

3/2/15 61.51  0.02211 664.796 
4/1/15 54.66  0.127881 749.8111 

5/1/15 64.13  -0.18213 613.248 
6/1/15 62.87  -0.2238 476.0061 
7/1/15 61.65  -0.22985 366.598 
8/3/15 52.45  -0.08656 334.8658 

9/1/15 48.8  -0.11947 294.8603 
10/1/15 47.48  -0.23589 225.3061 
11/2/15 47.91  -0.32269 152.6024 
12/1/15 42.97  -0.16849 126.8905 
01/04/16 36.28  0.003859 127.3801 
02/01/16 32.45  -0.4151 74.50463 
03/01/16 35.73  -0.46795 39.63988 
04/01/16 36.42  -0.47446 20.83216 
05/02/16 45.82  -0.57115 8.933915 
06/01/16 48.81    
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07/01/16 47.65  Return -0.16475 
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