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THE DENSITY MATRIX

A. The Problem
1. I made a calculation for DGS

I determined the energy eigenfunctions and
eigenvalues {1y, Fy} for the one-dimensional system
with Hamiltonian

using the double well potential shown at right. Then
using electrical units in which the charge of the par-
ticle at  was 1, I calculated the dipole moment ma-
trix elements

dmn = (Ym |z| ¥n)

and the first order transition rates

2T
kmn = ? |C1!mn|2 P(En)-

Let p,(t) be the probability of occupancy of 1,
at time ¢. I determined these probabilities by solving

M = Z knm pm(t) — pa(t) Z knm (1)

dt m>n m<n

with the initial conditions p,(0) = d, N

That is, I determined the probability of seeing the system in ¢, for all n, at time ¢,
given that ¢¥(0) = ¢¥y.

2. A critique

In the notes for a course given at the U. Chicago, Fermi labeled a calculation of
Pauli as a “golden rule.” Superficially, my calculation was an application of Fermi’s
Golden Rule I.

The calculation of Pauli addressed a difficult question: How can one explain a first
order (irreversible) decay using a quantum mechanical apparatus that is time rever-
sal invariant? The same question comes up in statistical mechanics: How can a system
started in any particular state relax to “thermodynamic equilibrium”?
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Pauli considered a system with Hamiltonian
H = Huatter + Hiera + V. (2)

He used time dependent perturbation theory to work out the state of the matter (t)
at time ¢, assuming that the matter-field coupling was weak and that the system was
started in 1(0) = ¢;. From the result he calculated

|{¢f|¢(t)>|2- |Vf,| (E+E;—E)t+---

with higher order terms having higher powers of the matrix elements of ¥ and higher
powers of t. There is supposed to be a continuum of field states that are coupled to the
matter (V;; being the magmtude of the coupling) and p(€ + E¢ — E;) is the density of

these states. Writing |f Yrl(t) ,;| =kyf;t+ - identifies the first order rate constant ky;.

But there are several questions that suggest that this calculation is not applicable to
DGS’s problem.

1° Where does this evaluation of |( P f|1,b(t))| apply? Only where kf; ¢ < 1. Only when
the system is only slightly perturbed. But DGS wants the )y component to go to
zero and many intermediate state components rise and fall to zero before the experi-
ment is complete.

2° What is the initial state in these calculations? If the 1, component grows in time,
the assumption is that we can calculate how rapidly it jumps into lower energy
states by using a calculation in which ¥(0) = ¥y,. That is, a collection of calculations
based on initial conditions that are not realized by the actual experiment are used to
determine the dynamical equation (1).

In fact, for £ > 0, the state is a complicated superposition of the v, components. In
general,

’!,D(t) Z Cn '¢’n (3)
n=0
Most |cn(t)]? never become large. Since the rate calculations are not made for the
actual circumstances of the experiment, it is not obvious that the calculated rates
apply to the real experiment. Shouldn’t interference between various terms lead to
transition rates that change in time?

3° When is the “measurement” made? The justification for looking at
L(tb fl't!)(t))| = |cf(2) (t)|? is that this gives the probability that the system appears to
e in state Yy if an observation of the state is made at time ¢, But, if the system is
observed to be in state ¥ at time ¢, the observer has changed the state. The rules
for the subsequent time evolution would change.
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Thus (1) would only apply if the state of the system were continuously being mea-
sured, and an ensemble of repetitions of the experiment was described statistically
with the p;,(¢). Again, this is not the actual experiment.

4° Does the matter have a state? The Hamiltonian (2) contains both matter and field
coordinates. It is, after all, the field coordinates that are actually observed. Suppose
{t¢m} are eigenfunctions of Hippatter- To provide a complete description of the system,
it is necessary to describe the field. So suppose that {(I)q} are energy eigenfunctions

of H field> With “g” some labeling scheme for field states. Then the set of functions

{lbn tI)q} provides a basis set for the states of the system. In general, the state of the
system can be written

‘I’ = Z an ¢n (I)q (4)

q,mn

If we start the matter in state ¥y and the field in state @, then
T(0) = ¢ Do

and it is clear that all properties of the matter are determined by .

But time evolution maps Cpg = é,N0,0 —
5 t
C"Q(t) = nN‘SqU e—zI:E,.—i-E.,)t,-"h ) Z an,mr./d’i‘ Cir(T) € i EntEgHE-T) /N
m,r h

In £ > 0, it is impossible to write (4) in the form (t) ®(¢), so there is no “state func-
tion.” from which the properties of the matter can be deduced. This is the “entan-
glement” problem.

B. The Example of Statistical Mechanics
1. The standard argument

Suppose we'’re looking at some mechanical system with Hamiltonian H and we know
the solutions to

H; = Bj;.

What is the “expectation” of some mechanical quantity Q of this system when the sys-
tem is thermostated at a temperature T?7 The canonical answer is

@= Y QuePE /[ S b (5)

states 7 states i

with 8= 1/kgT and Q; = (¥;|Q|¢).
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If the system were in a state like (3), the expectation of Q would be

Q) = Zc%k Qijcj- (6)
i

This is not the same prediction: The properties attributed to a system at equilibrium
are not the properties associated with some particular “state function.”

Jer58 ) = e e o

represent the canonical partition function. Then (5) can be rearranged to

S Qi PAED = 37 PA-ED (3 1Q)y;)

states ¢

= Z_(%leﬁm_m Qi)

~Tr [eﬁ(A H) Q] (7)

e PATVN) - 5 o

states i

The trace (7) can be calculated in any basis set. Thus there is an (Hermitian) operator
% e;i{A—H] (8)

from which all equilibrium properties can be deduced. von Neuman called p the density
malriz. A matrix representation of p in a basis set of energy eigenfunctions gives

[f)]mn = Omn Pn
with py, the weight (~ probability) of the state 1, in the canonical ensemble. Obviously

Tefp] = 1. (9)

In general, von Neuman argued, a complete characterization of any “statistical en-
semble” would require a density matrix. Generally, if {¢;} is any basis set and {w;} are
some weights with w; > 0 that sum to one, a density matrix would lock like

p= Z i) w; (il (10)

In the Schrédinger representation, we calculate

ih (BOIQNO) = (BOIQ. AIvO)
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and identify

ihQ = [, ]
The same logic applied to (10) gives
L d _— . f
ih—p=H.p| = —[p, H] (11)

Thus we identify A )
O(t) =it Ge—iHN
lt) _e—iHt/h i)eifh‘./h (12)
Q(t) =Tr[p(t)Q] = Tr[p(0)Q(t)]-

A density matrix will only be time independent if it commutes with the Hamilto-
nian. That is, the density matrix for an equilibrium system can only depend upon “con-
stants of the motion.” Of course (8) has this form.

There is an important subset of the set of possible density matrices, those for which

p=p.
For these density matrices, the eigenvalues satisfy A2 = A, whence they are 0 or 1. In the

basis set that diagonalizes p, the diagonal matrix elements will be 0 or 1, but only one
can be 1 since (9) must be satisfied. If ¢ is the eigenvector with eigenvalue 1, then

p = |9){e|

and
(@) = Tr[p Q] = (#|Ql9)-

This is the degenerate case where the“statistical ensemble” only contains one state.
Only in this special case can the matter be characterized by a wave function ¢.

2. A critique

This is the mathematical apparatus presented in an introductory statistical mechan-
ical course. But it is as mysterious as is the application of Fermi’s golden rule to DGS’s
decay problem. Why aren’t there any Q;; terms with i # j in (5)7 Wouldn’t (5) only
apply if we made an ensemble of measurements of the energy followed by measurements
of ), averaging the Q results? If Q(¢) is real, Q(t) = Q(~t). Then how can (10) lead to
an irreversible relaxation of any initial p(t) — the equilibrium form (8)?

gn
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C. A Second Look at the Measurement Problem
1. A Simple NMR Ezperiment

WWA

Let me idealize the NMR experiment in this way. A mag-
netic moment g in a magnetic field B will precess around the
magnetic field vector. If there is an electric coil near u, the
magnetic flux through the coil will change as g precesses, in-
ducing an £MF in the coil that can be observed. Hence, to N
measure the magnetic moment of a proton, we place the pro- \{_\//
ton in a field aligned in the z-direction, B = By k, at the cen-
ter of a coil with symmetry axis aligned in the z-direction. To enhance the response, we
connect the coil to a capacitor to create a resonant circuit with frequency equal to the
precessional frequency of the proton.

The equivalent circuit for this is shown in the Figure. The AC signal generated in
the coil is
Veoit (£} ¢ fea(2)

and this leads to a voltage across the capacitor

vILC

vsz’gnal(t) = RC Veoil (t)

This voltage is coupled to a transistor - - - .
2. Where is a Measurement Made?

The output of the spectrometer is a classical signal, but the magnetic moment of the
proton,

" 1 & 110 11 . 1o —i1 . 171 0
p = vha, w1ths$=—2~[1 OJ’Syzili Oz],3z=“2“[0 1],

is a quantum mechanical operator. We start by describing the proton with a spinor
wavefunction ¢. The state evolves in time under the influence of the Hamiltonian

H = —3.hBy = —2hwi. (1)
giving
¢mmﬂw%m;ﬁm%@=FTtﬁmhm- (2)
The expectation of yy is v times
(82) = (15| @) cos(wt) + (¢]sy| #) sin(wt). (3)
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A “quantum measurement” is made somewhere between (2) and the output of the spec-
trometer.

3. The Measurement

At an elementary particle level, the interaction between the spin of the proton and
the detection coil is an interaction between the spin of the proton and the charge of the
electrons in the coil. Both the proton and the electrons are traditionally viewed as quan-
tum objects. The coil, however, presents two special features.

1° There are many electrons in the coil. While each electron has a large quantum un-
certainty about where it is (i.e., about it’s contribution to the charge on the capaci-
tor), the capacitor sees the sum of the contributions of many electrons. If a quantum
mechanical uncertainty o is associated with each electron, the uncertainty associated
with N electrons will be o/v/N if each electron makes a statistically independent
contribution.

2° The electrons, however, will only make statistically independent contributions to the
observed voltage if the motion of the electrons in the coil are uncorrelated. Since
the same driving field is applied to all the electrons (there is just one proton), the
motion in the electrons induced by the precession of the proton should be completely
correlated.

The second feature of the coil, however, is its resistance. The electrons in the coil
are coupled to a heat bath. While the proton is trying to correlate the motion of
these electrons, the heat bath is trying to destroy any correlation between the elec-
trons. The proton induced correlation in the electrons is transported into the heat
bath, leaving no visible correlation in the electrons.

We are accustomed to ignoring the quantum uncertainty associated with the states
of macroscopic systems. To get a rough image of how this comes about, suppose the
electrons in the coil do not interact and ignore the fact that they are Fermions. If the
interaction with the heat bath is ignored, each electron’s state will propagate in time ac-

cording to
i

—%fd'rff('r)
p(t) =e O #(0)

with H(t) characterizing the spin dynamics of the sample. The effect of the interaction
with the heat bath will be small erratic changes in the energy of the electron and hence
the accumulation of an additional, stochastic phase shift, i.e.,

. 1
—%fdr [H(T) + E('r)]
¢(t)=e O $(0).
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To characterize £(7) precisely, we’d have to solve the equations of motion for the heat
bath. £(7) should be an operator, but I will take it to be a scalar with ensemble average
properties

£(t) =0,
£(11) () = Ad(ta — ta),
§(t1) E(t2) E(t3) =0,
E(t1) &(t) &(t3) E(ta) =
A2[8(tg — t1) 8(tq — t3) + 8(t3 — t1) 6(ta — t2) + 8(ta — t1) 6(t2 — ta)],

The amplitude A of the fluctuations is o< h kgT.

t
The integral [dr £(7) accumulates a stochastic phase shift that grows in time. To
0

estimate the memory time of the wave function, we would ensemble average the time
auto-correlation function

)
%/d’rf('r)
d(t2) - p(t1)" = F(ta,t1)e B :

F'(to,t1) describes the bath-free dynamics. The ensemble average of the exponential fac-
tor gives

2
iﬁd‘rf{r];’h

e B = g—Alta—ti|/2R*

The memory decays in time with a rate that is proportional to the coupling to the heat
bath. The coupling to the heat bath makes the wave function forget its past.

Since each electron in the coil has a different interaction with the heat bath, the heat
bath destroys the coherence between the electrons. Thus the actual character of the
electrons is a steady state between the rise of coherence associated with deterministic
dynamical motion (the equation of motion for a wave function has a diffusive form) and
the destruction of coherence due to the coupling with the heat bath.

4. The Conclusion

Where does something get “squared?” There is no squaring. It is the natural mo-
tion of the electrons in the coil that leads to a signal that follows the rules of classical
dynamics.

My argument for this is heuristic. Can I give a more formal argument? The answer
is “yes and no.” The description of the measurement is no different than the description
of the time evolution of DGS’s system or the relaxation to thermodynamic equilibrium

8
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of any system. We have a general formalism for this. But the formalism hides an essen-
tial uncertainty: Will the system actually exhibit irreversible behavior? In general, we
know the answer empirically. But we have no abstract measure of Hamiltonians that
predicts how a system will behave.

. Subsystem Properties
1. System @ Field

Let me shift notation. Suppose system refers to mechanical system that is the fo-
cus of attention. This has coordinates {¢;} and a Hamiltonian fIsys. But this system
is connected to other coordinates, {Q;} that will be vaguely referred to as the “field”.
The field alone would have a Hamiltonian A fietd, @nd the Hamiltonian that governs the
composite system + field is ) ) i )
H = Hgys+ Hyjeta + V-

I?sys operates in the space with coordinates {¢;}, H field Operates in the space with co-
ordinates {Q;}, but V, the coupling between these two parts, involves both these sets

of coordinates. If {#(g);} form a basis set for states of the system and {®(Q);} form a
basis set for states of the field, the functions {¢; ®;} will be a basis set for the composite
system. Any state ¥(t) can be represented

(t) = ZI Cir(t); @ (1)

Suppose that we want to observe a system property Q.

(@) =(TOIQIT ()
=<ZI Cir(t) 1/)i(I)IlQ|ZJCjJ(t) ¥ ‘I’J>
i Jx
= 3 Cilt) Ciue)(wi ®1|Qpw; )

i,
= Y Cult)* Ciut)(ilQle; (@11,
il
=3 Ciy(t)* Cj1(t) Qi
igl
=>_Qij ; Cir(®)* Cjr(t)
2V}

Now define a density matrix for the system by giving it’s matrix elements

pii(t) = > Cir(t)* Cjr(t) (2)
T
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Then ) )
(Q(2)) = Tr[Q a(t)] = Tr(p(t) Q

In Dirac notation, (2) is

p=2_(2/%0t)) (L)1) (3)

I

L. D. Landau’s view was that there was no system that was “isolated” from the rest
of the universe. Thus no system had a wave function. But every system has a density
matrix.

. van Hove’s Formulation
1. Ingredients

In two papers (1955, 1956) L. van Hove gave a general quantum mechanical formu-
lation of the “first order relaxation” problem. The formulation could describe the ap-
proach of a system to equilibrium or the radiative decay of a system. This was followed
immediately by classical mechanical descriptions of the relaxation of a system to equi-
librium coming out of I. Prigogine’s “Brussels Group.” R. Zwanzig reformulated both
arguments to (1) clarify what the essential ingredients of the arguments were and (2)
show that the structures of both approaches were the same.

The essential ingredients are

- the application of second order perturbation theory. The coupling between the mat-
ter and field are, after all, weak. But the analysis is not limited to short times.

- calculation of a density matrix. This postpones the “squaring” issue.

- the recognition that the system has a high density of states. These are described
“statistically,” rather than explicitly.

- that a particular observable is the target. This means there is a particular basis set
in which the problem is formulated.

2. What do we seek?

As spectroscopists or thermodynamicists, we'd like to describe the system with
something like
d pn(t) i

= Z knin Din(t) — pa(t) Z knm, (A.1)

m>n m<n

with the p,(f) the probabilities that a system will appear to be various energy eigen-
states at time 1.

Almost. The “energy eigenstates” are associated with a Hamiltonian that is not the
real Hamiltonian of the system. The spectroscopist imagines states of a system that
does not interact with the electromagnetic field, the thermodynamicist imagines states ol

10
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a system that does not interact with a heat bath. This skewed view explains why there
is time evolution. Otherwise dp,(t)/dt = 0 for all n. The rate constants in (A.1) come
from photon-matter coupling or state-heat bath coupling.

Let I:IO represent. the Hamiltonian whose cigenstates are the states that the p,(t} are
supposed to describe. If we use these eigenstates as a basis set, then

Pnn (t) = Pn(t)-

So Eq.(A.1) asserts that, in this representation, the time evolution of the diagonal ele-
ments of the density matrix is determined completely by the diagonal elements them-
selves.

If the actual time evolution is induced by IEIO + V, it is easy (and simpler]ﬂl to require
that V have no diagonal matriz element: Simply add any diagonal terms to Hy.

3. Super Operators

Quantum mechanics constructs operators that operate on state vectors. The state
vectors form a vector space. That is, state vectors can be combined to form new state
vectors,

{a, 9,8, maxp+B+¢.

But the operators themselves can be similarly combined. They form their own vector
space. We will call operators that operate on this vector space of operators super opera-
tors. There are two super operators whose introduction simplifies an otherwise complex
notation.

The actual equation of motion of p(t),

d 5 .
h—p=|Hy+V, 0|, 1
ith—p=Ho+V, 7] (1)
says that dp/dt is linearly related to p. Define the Liouville operator L (a super opera-
tor) by
dp(t)

L = —Lp(t) = ~Lob(t) = Ly p(t).

Ly .21, for example, maps an operator A into a new operator,
cy A=47,4
Vv - h 1 .

The second super operator P projects out the off-diagonal parts of an operator. In
the basis set defined by Hy,
[PA] = Aun Omn
Tin

11
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PA is “diagonal.” P2 = P, a property of all projection operators. Using P, we can sepa-
rate the diagonal and off-diagonal components of p.

lbd = Pf’1 f’od = {1 - P)ﬁ’

With this separation, (1) gives two, coupled dynamical equations,

dp . x
=t = —PLpy— PLAo (2)
Pod (1 -P)Loy~ (1~ P)L g 3)

Now :
. i, = N
PLpg = E'P[HO +V, pdl
T
= EP[V'pd] =0

because [Hy, pg] = 0, while

F §, o 5
PLpoa = 7 PIHo + V', bodl
= 3PV, bodl = PLY Pou

so (2) can be written

dpg _ .
5 = ~PLv bou- (4)

The rate of change of the diagonal elements of the density matrix is actually determined
by the off-diagonal matrix elements!

The “random phase approximation” suggests that p will start diagonal. Anyway,
suppose that p,4(0) = 0. Including other initial conditions is straight-forward, but I
don’t know of any interesting applications with other initial conditions. With this initial
condition, the Laplace transform of (3) is

8 Pod(s) = —(1 = P)L pa(s) — (1 — P)L poa(s) (5)
which can be iterated to generate

n

Podls) = { > [a- 'P)c]k} pulo) + [~ (1 =P)] poals)

k=1

12
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or
n— 1( T)L

Pod(t) = f a1 =PI 3

[(1—P)LIF palt — 1)

-~ Jartt -2 (1 = PP =
0

Taking n — oo gives

i
Poalt) =— [ dre==P)LT (1 _ D)L pylt — 7)

l‘
=~ [are"(=PET (- P)Ly pylt - 7) (6)
0

showing how the off-diagonal terms are determined by the diagonal terms.

Using (6) to eliminate p,g(t) in (4) gives an equation for the diagonal terms alone,

A t
dpgt(t) =PLy [dre CPET(L-P)Ly pyft — 7). 7
0

Equation (7) is exact, but complicated. To simplify this result, first note that there
are two explicit V factors. So the second order perturbative result is obtained by remov-
ing all other V factors. To second order in V,

" 4
f‘fé!.t@ ~PLy [drePET (1 P)Ly py(t~ 7). (8)
0

To evaluate this expression, start with

. i
[£V Pd]mn = 'ﬁmnn(Pnn Pmm)-

This is off-diagonal, so the subsequent (1 — P) factor in (8) has no influence. If Z repre-
sents this result,
iT

{1 - —(Em —Ep)+ = (—""')2 (Em — En)2 + .- } Zmn

[e—[l—P}ﬁ(}TZ
h

mrn

Em-En) T/ﬁ» ZT i

13



DENSITYMATRIX/vanHave February 1, 2007

whence

n— Ek)T]

E
R (XL

t
dp’m(t — _32 / [Pnn(t = T) o= Pkk(t = T)] (9)
0

This has the qualitative form of (A.1), but it shows that the system has memory: The
time evolution of p,,(t) is determined by the previous histories of the diagonal matrix
elements. If we define

2 E,—-E )T
Komssr) = g Wi cos [ 22T an

then

t
dprcliftl(t) o -/dT Xk: Ky ka(7) [onn(t — ) — pra(t — 7)) (12)

Kpp ik (7) is a memory function that explains how the memory of the phases of the den-
sity matrix elements influences time evolution of the system. The details of the time
evolution depend upon the characteristic properties of the system. As a general rule,
the Ky j4:(7) will decay — 0 as 7 grows. The system will have a finite memory time.

Fermi’s Golden Rule

Equation (E.12) exhibits memory. The time evolution is not the Markov process as-
sumed in (A.1). What the difference is depends upon the details of the system, the dis-
tribution of states and the magnitude of the |V,;|°.

The Markovian approximation will be excellent, however, if

punlt — 1) — pri(t — 1) = pan(t) — prr(8),

if the change in the diagonal components is small on the time scale of the memory of
Ko 1:1:(7). Since the rate of change of the diagonal components of the density matrix is

) (|Vnk|2), this condition will be satisfied for sufficiently small |V,.{2. Thus, if we look

at a system with sufficiently small ank|2 at times ¢ > the memory time of Ky, 1.1.(7),
(E.12) reduces to
dpnn(t)

dt s Z’Cnn,kk [nn(t) ~ ori(t)] (1)
k

with the rate constants
o0
2 E,—E.)T 2
Knngk = ) V2 Ofd’r o8 l%} =i Vi) 8(Ep — Ep).

14
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If we say that |Vnk|2 doesn’t vary with final field state and we sum over all final field
states, 6(En — Er) — D(Efied), the density of states in the field. In this case Fermi’s
Golden Rule for the rate constants is recovered.

The short time approximation of the naive analysis has been replaced by the approx-
imation that time evolution is slow on the observation time scale. In fact, van Hove de-
scribed (1) as being the first approximation in

A= |Vnkl2 -t
It always fails at sufficiently long times, but how long depends upon the magnitude of

|Vnk|2 . If |Vnk|2 isn’t that small, or we want to describe the dynamics over a longer
time, we must go back to (E.7) and make a better approximation.



DENSITYMATRIX /vanHove February 1, 2007

. Examples of Magnetic Resonance Usage
1. A Single Spin

Consider of a single, unpaired electron on a molecule in a liquid phase. If 5 is the
vector with /i X Pauli spin matrices for components, the electron’s magnetic moment
operator will be

f=-98
The motion of the magnetic moment in a magnetic field B will be determined by the
Hamiltonian
H=—-4i-B.
Consider this experiment. The spin is initially oriented along the x-axis (spin state a)

and the magnetic field is 2
B(t) = Bgz + b(t)

with Bz a large external field oriented along the z-axis and b(¢) a much smaller field
arising from the interaction with the magnetic moments of the nuclei in the system. b()

fluctuates in time. By symmetry, (b,(t)) = <by(t)> = 0. We can make {(b-(t)) = 0 by
redefining By. A detection wire coiled around the electron allows us to observe p(t).

If we represent matrices in the a-, 5. basis set,

11 1]
; — P | = - 1\.
HO) = las)el =3 |1 1] (
and hi1 h 1[h 0 1, [b:(8) b-(2)
- 11 hio W B .
H= == — —vh 2
[hgl hgg] 2 l 0 —ﬁw] 27 [ by (t) —b:(t) 2)
with w = v By and b4 (t) = by(t) £ iby(t). Note that hgs = —hyy and hgy = hi,.
In time, p(0) propagates via the rule
L d -
th—p(t) = [H, p(t)) (3)
and the signal observed is
g 1
5(t) = =y Tr[p(t)32] = ~5v 1 [p12(t) + p21 (2)] - (4)

2. Superoperator View

The rate of change of p(t) is fixed by

hi2p21 — ho1p12 —(ha2 — h11)p12 + h12(p22 — p11)

H:p =
4, 7] —=ho1(p22 = p11) + p21(haz — h11) —hy2p91 + ho1p10
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Now shift from picturing p(t) as an operator on spin states to picturing this operator
as a 4 component vector,

P11
- P12
t) =
At) por
P22
Then the equations of motion for p(t) are
L 3(e) = —£ (1) (5)
with
0 —hoy hi2 0
[e 1 —h1s —hso + h11 0 hia
N h h?l 0 hgg — hll —hg]_
0 ho1 —hy9 0

a superoperator in the sense of Zwanzig.

A perturbative solution will be developed, based on the fact that |b(t)] << Bp. To
this end, separate

L=Ly+ Ly
with
00 0 0
0 0 0
Lo=tly o —w o0
00 0 0
and
0 —by(t) b_(2) 0
o iy | =bo(0) 26:(t) 0 b_(t)
VT be(t) 0 —2b,(t) —by(t)

0 be(t) —b_(t) O

Since Ly is independent of time, (5) is equivalent to

t
At) = e 50t 5(0) — [ dre D) Ly () ()
0

17
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Iterating this relation gives
t
ﬁ(t) _ {e--[,[]t _ [dT e—Cu (t=T7) ﬁ].’l:'r) e—ﬁn'r
0

t T
+ [ar [ar' e b0l £y (r) el £y ()e 0T 4 m{cv)3} A(0)
0 0

If we average over the ensemble of b(t) fields,
o)== 0.

Thus, to second order in b(t),

(B(t)) = {e—ﬁnt+ j dr fT dr' e Lot-7) <£V(T)e-£0(f-f’) cv(—r')>e—ﬁnf’ }5(0). (6)
0 0

With .
. 111
1
(6) reduces to
= 1 e'*l‘”t T 1 —Lo(t-T) Lo(r—7") / e—"l‘”'
B6) =51 | St |+ [dr [ar' et (Ly(mre ol gy | g
1 0 0 1

(7)

As the fluctuations in b(t) are stationary, the terms in the ensemble average in (7)
must be functions of 7 — 7. To get a concrete result, I will assume that b(t), by(t) and
b.(t) are all statistically independent and I will ignore the fluctuations in b.(¢) {which
are a little more complex because they involve a Boltzmann factor). Thus the only
quantity assumed to be relevant is

(barIbas") = (b)) = ol — =),

18
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the correlation function for fluctuations transverse to the By field. With this approxima-

tion )
(Lv(r) et £y ("))

o [ 2cosw(r - 7)] (1) 8 —2 cosfw(t — 7')]
) 0 0 1 Hr =)
—2coslw(r—7")] 0 0 2cosfw(r—17)]

whence
i T
B 1 e—lwt 72 —iw(t—T+7")
(p(t)) =§ gtwt | — oY /d'r _/dTIfﬁ T—= T ee;'w(g_1-+1-’)
0 0 0
In particular,

2 i T
(p1a(t)) =_;_{ —iwt—%]d'r fd‘r’e_“u (t—7+7") d(r ~ )}
0 0

To second order in b(t), this is equivalent to

t T
_l S 72 fdwT
{p12(t)) = 2exp{—zwt— 5 OdeJdT e s

[Compare with the equation on the bottom of page 7.]

For ¢ > the memory time of the transverse fluctuations,

ZRE 2
Y foiwT 7ot ! iwr no_ :
o) Ofd'rofd'r e (") =5 dr'e ()= (C+i)t

and
(p1a()) = lexp{—mt— (T+iQ)t} = lexp{ i(w+Q)t—Tt)

Recalling pj2 = p3,, the observed signal is predicted to be

S(t) = —%’Yﬁ [p12(t) + p21(E)] = ——21—77“1 cos {(w + Q) t] e L't (8)

' 1 would be the “Ty” for the system. Neglecting the fluctuations in b(¢) makes this
the only source of linewidth in the signal.
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3. Chemical Exchange

The signal (F.8) is Fourier transformed to obtain what would have been seen in a
“continuous wave” spectrometer. That is, the spectrum of the electron would be

r

) =Co——ar

If the electron could be on two distinct molecules with two distinct chemical shifts (£2’s)
and linewidths (I"’s), then the reported signal would be

I
(v—w—0)2 + 1%

Ty
C
* 2(V—w—92)2+I‘%

Ivy=C (1)

The spectrum (1) would be seen if the electron did not jump between different
molecules in the lifetime of the experiment. If the molecule jumped (if there was “chem-
ical exchange” ), the dynamics of p,(t) could be significantly altered. In the rapid ex-
change limit, one would expect the two Lorentzian lines in (1) to collapse into a single
line.

To provide a dynamical model for this process, first simplify the results of §F.2 by
saying that the equation of motion for an electron on a single site is

= lt) = —L7(0)

with
0 0 0 0
coq |0 wrair 0 0
o 0 —(w+Q+il) o]’
0 0 0 0

a time independent superoperator.

Each of the two classes of molecules provides a different dynamical environment for
the electron. At any moment, however, the electron is in one or the other environment,
so we could separately determine the density matrices that characterize the two environ-
ments. Let these be gq and py If we interpret these as the average values of the density

matrices, the equations of motion for these two quantities can be constructed in analogy

with (A.1),
%p’a(t) = —LapPa(t) — k Pa(t) + k Fy(t) )
dét.p‘b(;{) = —Lppp(t) — kpp(t) + k pa(t)

20



February 1, 2007 DENSITYMATRIX /vanHove

with & the rate at which the electron hops from one environment to the other, the chem-
ical exchange rate. [For simplicity, I've assumed that both environments are equally pop-
ulated at equilibrium.]

If I further assume that both environments have the same T5, (2) gives these equa-
tions of motion for the p19 components,

d )
pn Pa2(t) = —[i(w + Qa) +T) pe,12(t) — £ pa12(t) + k py12(2)

d )
- pp12(t) = —filw + Q) + T py 12(2) = k pp12(t) + & pa,12(t)

Initially, pa,12(0) = py,12(0) = %, so but the Laplace transform of (3) is

[s + & +T +i(w + Qa)] Pa,12(5) = kpy 12(5) =

| = B3|

—kpgi2(s) + [s + K + T +i(w + Q)] pp,12(5) =3

which fixes

s+ 2k 4+ T+ i(w+ Q)
[s 4+ k+T +i(w+ Q)]s + &k +T + i(w + Q)] — k2

- 1
Pa12(s) = 5

The general structure of the spectrum is determined by the poles of this function. There
are two poles (so two Lorentzian lines) located at

Q
s+ = —i(w+ &1-%-—!’) -

1
k-T+ 5\/4132 — (U — Q)2

As k rises from 0 toward |, — Q1/2, the two isolated lines begin to move toward each
other and their width grows. When & passes |2z — §2|/2, there are two lines, both at
the average frequency, but with widths that increase and decrease with increasing k.
The narrower line is that which dominates the spectrum, of course. Thus, high exchange
rates — or rapid phase shifting - can actually lead to sharper lines!
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