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Corrigendum to:
Operator monotone functions and

Löwner functions of several variables

By Jim Agler, John E. McCarthy, and N. J. Young

Abstract

We fix a gap in the proof of Theorem 7.24 in Ann. of Math. 176 (2012),

1783–1826.

There is a gap in the proof of Theorem 7.24 in [1], though the statement
of the theorem is correct.

In the proof of necessity, we argue that ⇤ is in G by contradiction. If it
were not, invoking the Hahn-Banach separation theorem would yield a real
skew-symmetric matrix K and a constant � � 0 such that tr(�K) � �� for
all � in G, and tr(⇤K) < ��. In the proof we assumed that � = 0, but this
assumption is unjustified.

Instead, we argue as follows. Define � by

�r
ij = (xrj � x

r
i )Kji, i 6= j,

and with the diagonal entries �r
ii chosen so that each �r � 0 and so that

(0.1) µ

r :=
nX

i=1

fr,i�
r
ii

is minimal over all choices of �r
11, . . . ,�

r
nn such that � � 0. (A minimal

choice exists, since all the fr,i are strictly positive by assumption.) Then � is
in SAM

d
n , and

[�s
, S
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, S
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As f is locally Mn monotone, we must have then that D�f(S) � 0 by
Lemma 7.3. As

�� > tr(⇤K) =
X

1i,jn

[D�f(S)]ij �
dX

r=1

nX

i=1

�r
iifr,i,

we get that

(0.2)
dX

r=1

µ

r � � >

X

1i,jn

[D�f(S)]ij � 0.

By Du�n’s strong duality theorem [2], the minimum µ

r in (0.1) satisfies

(0.3) � µ

r = min
X

i 6=j

�ijA
r(i, j),

where A

r range over the set of real positive matrices such that the diagonal
entries of Ar are fr1, . . . , frn for each r.

For each such A = (A1
, . . . , A

d), let � be the corresponding element of G:
�ii = 0 and

�ij =
dX

r=1

(xrj � x

r
i )A

r(i, j) for i 6= j.

We have

��  tr �K

=
X

i 6=j

dX

r=1

(xrj � x

r
i )A

r(i, j)Kji

=
dX

r=1

X

i 6=j

�r
ijA

r(i, j).

Hence, by equation (0.3), ��  Pd
r=1(�µ

r), so
Pd

r=1 µ
r  �. This contradicts

(0.2), so it follows that ⇤ 2 G, and necessity is proved.
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