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Abstract 
Hopanoids, a group of isoprenoid lipids produced by certain bacteria, are common 

biomarkers that are informative about past life. However, several mysteries remain regarding 

their purpose and production in vivo. One of these mysteries is why certain strains of bacteria 

possess two copies of a gene, sqhC, whose product, the enzyme squalene-hopene cyclase, is 

instrumental in the production of hopanoids. It is unusual for bacteria to have two copies of a 

gene due to the added energy cost of replicating the second copy. Therefore, it is posited that 

there is some evolutionary advantage to this second copy of sqhC. Additionally, every sqhC2-

containing strain examined also has a gene for a TetR-family transcriptional repressor 

immediately upstream of sqhC2, which may regulate sqhC2 expression. Starting from Pearson et 

al.’s (2007) list of genera whose strains may have two copies of sqhC, phylogenetic trees were 

constructed to examine the evolutionary relatedness of sqhC1, sqhC2, and the tetR gene 

associated with sqhC2. These indicate that sqhC2 and tetR may have co-evolved, supporting the 

idea that this TetR protein regulates sqhC2, and that different genera evolved sqhC2 

independently several times, forming several orthologous clades, supporting the idea that sqhC2 

and its associated tetR carry an evolutionary advantage. The tetR gene associated with sqhC2 

was unable to be knocked out in Methylobacterium extorquens CM4, which may indicate that 

regulation is necessary to the evolutionary advantage conferred by sqhC2, but this is pure 

speculation. 

Introduction 
 Hopanoids are pentacyclic isoprenoid lipids produced by certain bacteria. A 

representative hopanoid structure is shown in Figure 1 below, adapted from Kulkarni et al. 

(2015). Hopanoids are typically well-preserved in the rock record, making them an extremely 
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common organic component in sediment and sedimentary rocks up to 1.64 Ga (Belin et al. 

2018). As such, hopanoids are useful in deciphering geobiological history, particularly when 

reconstructing bacterial ecology. However, despite existing work using hopanoids to investigate 

paleobiology, much remains unknown about the role of hopanoids in living organisms. In order 

to be able to use hopanoids to their full potential in paleo- and geobiological research, it is 

imperative that their biological role be understood in great detail in modern bacteria. This project 

aims to expand existing knowledge about the biosynthetic pathway of hopanoids. 

 

Figure 1: Representative hopanoid structure (adapted from Kulkarni et al. 2015) 

 While some debate remains (Saenz 2015), the most widely-accepted function of 

hopanoids in live bacteria is as a control on cell membrane fluidity, similar to the role of sterols 

(tetracyclic isoprenoid lipids) in eukaryotes (Belin et al. 2018). Despite remaining questions as to 

the molecules’ function, the process of hopanoid ring biosynthesis is well-characterized. 

Hopanoids are synthesized by first cyclizing a squalene molecule and then modifying the side 

chain in a variety of ways to produce diverse hopanoids (Belin et al. 2018). The cyclization of 

squalene for hopanoid formation is performed in one concerted reaction, catalyzed by the 

enzyme squalene-hopene cyclase (SqhC), as shown in Figure 2 below, adapted from Pearson et 

al. (2007). SqhC cyclization of squalene produces either diploptene or diplopterol, pictured in 

Figure 3 below, adapted from Belin et al. (2018). Only ~10% of bacteria are believed to possess 
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the sqhC gene that encodes SqhC, which defines the species capable of hopanoid production 

(Pearson et al. 2007). 

 

Figure 2: Electron-pushing diagram showing how squalene is cyclized to diploptene in one concerted reaction (adapted from 
Pearson et al. 2007) 

 

Figure 3: Squalene-hopene cyclase-mediated cyclization of squalene to form diploptene or diplopterol (adapted from Belin et 
al. 2018) 

 Despite how well-characterized hopanoid biosynthesis is, some aspects of their 

production remain unknown. One of these revolves around a set of bacteria that appear to have 

two copies of the sqhC gene. In preliminary work by Pearson et al. (2007), the duplicate copies 

appear to be orthologous, more closely related to one another than any paralogous pair possessed 

by one organism. Additionally, this duplicate copy, dubbed sqhC2, appears to be associated with 
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a tetR-family transcriptional repressor found directly upstream of sqhC2. Here, the phylogeny of 

these duplicate sqhC genes, as well as that of the tetR genes associated with sqhC2, are examined 

in more detail, and the function of each copy is examined in Methylobacterium extorquens CM4. 

It is hypothesized that the two copies of sqhC may be involved in the production of different 

hopanoids, or that sqhC2 simply produces more of the same hopanoids under some as-yet-

unknown conditions. Especially in the latter case, which could be achieved through simple 

regulation of one copy of sqhC, the evolutionary advantage of this system must be characterized. 

The replication of an additional copy of a gene carries an energy cost that reduces fitness (Adler 

2014), so it is believed that sqhC2 must increase fitness in some way to compensate for this 

penalty. Furthermore, the TetR repressor encoded upstream of sqhC2 must be confirmed to act 

on sqhC2 itself. Phylogenetic evidence presented here suggests that the sqhC2-tetR system 

evolved multiple times in different clades, lending credence to the idea that this system carries an 

evolutionary advantage, and that sqhC2 and tetR coevolved, lending credence to the idea that this 

TetR regulates sqhC2. The lipid products of the enzymes encoded by sqhC1 and sqhC2 in M. 

extorquens CM4 were unable to be compared, but this, in itself, suggests the possibility that the 

regulation afforded by TetR is crucial to the increase in fitness afforded by the sqhC2-tetR 

system. 

Methods 

Phylogenetic Tree Building and Comparison 

Sequence Generation using BLAST 

 These sequences and the phylogenetic trees generated in the next section were ultimately 

not used, but are included for completeness. The preliminary method of sequence collection used 

GenBank and the BLAST tool to find and compile the nucleotide sequences of squalene-hopene 

cyclase (sqhC) genes in species known to have two copies based on the work of Pearson et al., 
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2007. The BLASTN program was used to gather these sequences using the nucleotide sequence 

of M. extorquens CM4 acquired earlier in the history of this project as the query sequence. This 

query sequence was used in a search against the genomes of each of the species identified by 

Pearson, et al., in turn. This was performed by entering a species name (e.g., Geobacter 

sulfurreducens) in the “Organism” field and selecting each strain in the GenBank library in turn 

and searching using the BLASTN program for slightly similar sequences and its default 

parameters. 

Each of the high-coverage, high-fidelity alignments (typically the first two to three 

alignments sorted by E-value) was examined in GenBank by following the “GenBank” link next 

to the range of the alignments under the “Alignments” tab of the BLAST results. From this page, 

the “Graphics” link beneath the name and locus of the GenBank record was followed to the 

location of the alignment in the subject region. If this alignment block fell within an annotated 

gene labeled shc, this gene’s nucleotide FASTA sequence was collected by following the 

“FASTA record” link that appears when hovering over the name of the gene above the track (not 

the track itself). 

The region upstream of each of the annotated sqhC genes was then investigated for the 

presence of an annotated tetR family transcriptional regulator. This was done by hovering over 

the tracks for gene annotations immediately upstream of the sqhC genes and determining 

whether the “Name” field indicated a tetR regulator. Those that do have such names as 

“transcriptional regulator, TetR family.” The nucleotide FASTA sequence of each tetR gene 

identified was obtained in the same way as the sqhC sequences. 

Tree Generation using PhyML 

 The FASTA sequences for the sqhC genes acquired using the preceding method were 

aligned using the Clustal Omega tool at https://ebi.ac.uk/Tools/msa/clustalo/, with the output 

https://ebi.ac.uk/Tools/msa/clustalo/
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format set to “ClustalW with character counts” and with default settings. The alignment was then 

converted back to FASTA format using the tool at 

https://sequenceconversion.bugaco.com/converter/biology/sequences/clustal_to_fasta.php, and 

the number of sequences and length of the alignment were added at the top (in this case, “15 

2494”). This file was then used to build a phylogenetic tree at https://atgc-montpellier.fr/phyml/, 

using different combinations of parameters. 

Sequence Generation using SEED 

 Subsequently, sqhC and tetR sequences were gathered from the SEED database found at 

https://pubseed.theseed.org. These were found by searching “squalene hopene cyclase [genus]” 

for the genera presented in Pearson et al., 2007, Figure 4 (e.g., Geobacter). Each unique sqhC 

sequence was obtained directly from the SEED viewer. Each was also examined for upstream 

tetR and acrR (acrR is also in the tetR family) genes by looking at the “Visual Region 

Information” tab. Where tetR or acrR genes were found, their tracks in the viewer were clicked 

on, which directs the user to the page for that gene, from which the sequence can be obtained. 

These sequences are available in Supplemental Material. 

Tree Generation using RAxML 

 The FASTA sequences for the sqhC genes acquired using the preceding method were 

aligned using the Clustal Omega tool at https://ebi.ac.uk/Tools/msa/clustalo/, with the output 

format set to “ClustalW with character counts” and with default settings. The alignment was then 

converted back to FASTA format using the tool at 

https://sequenceconversion.bugaco.com/converter/biology/sequences/clustal_to_fasta.php. This 

file was then uploaded as the input alignment in RAxML-GUI and the program was run with 

default parameters. The resulting tree was visualized by uploading the best tree file produced by 

RAxML to https://itol.embl.de/upload.cgi. This process was repeated for a file containing tetR 

https://sequenceconversion.bugaco.com/converter/biology/sequences/clustal_to_fasta.php
https://atgc-montpellier.fr/phyml/
https://pubseed.theseed.org/
https://ebi.ac.uk/Tools/msa/clustalo/
https://sequenceconversion.bugaco.com/converter/biology/sequences/clustal_to_fasta.php
https://itol.embl.de/upload.cgi
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and acrR sequences, as well as one containing only the sqhC sequences associated with these 

tetR and acrR genes—sqhC2. 

Tree Comparison 

 The sqhC2 and tetR trees were put into this website: https://eti.pg.edu.pl/TreeCmp/WEB, 

which returned a weighted Robinson-Foulds metric based on clusters. Two random trees with the 

same number of leaves as the sqhC2 and tetR trees (22) were also generated for comparison at 

this site: http://www.trex.uqam.ca/index.php?action=randomtreegenerator&project=trex, and 

their weighted Robinson-Foulds metrics based on clusters calculated at 

https://eti.pg.edu.pl/TreeCmp/WEB. 

tetR Knockout Generation 
 The procedure outlined below was ultimately unsuccessful, despite nine months of effort 

and troubleshooting. Possible explanations for this will be explored in the results section. Despite 

its failure to produce results, the procedure used in the attempt to knock out the tetR gene 

upstream of sqhC2 in M. extorquens CM4 is described here. An “in-out” allelic exchange 

method was used for this purpose. In this method, the sequences immediately upstream and 

downstream of the gene to be knocked out are cloned onto a plasmid containing an antibiotic 

resistance cassette, as well as the sacB gene. sacB encodes levansucrase, which, when expressed 

in gram-negative bacteria, converts sucrose to a lethal compound. The knockout plasmid 

sequence is allowed to exchange with the wild-type gene, inserting the knockout plasmid into the 

genome. Organisms with the knockout plasmid inserted into the genome are selected for through 

exposure to antibiotics that the knockout plasmid carries resistance for. Exposure to sucrose is 

then used to select for those organisms which have undergone exchange again to eject the 

knockout plasmid, either reverting to wild-type or taking on the knockout allele from the 

knockout plasmid. This second exchange is further confirmed by simultaneous plating with and 

https://eti.pg.edu.pl/TreeCmp/WEB
http://www.trex.uqam.ca/index.php?action=randomtreegenerator&project=trex
https://eti.pg.edu.pl/TreeCmp/WEB
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without the antibiotics that the knockout plasmid confers resistance to. Those that only grow in 

the absence of these antibiotics can be either wild-type or knockouts, and gel electrophoresis and 

sequencing are used to identify knockouts. The knockout plasmid used in this case is pAB274, 

generated by Jeremy Pomerantz, a previous undergraduate in the Bradley Lab, by modifying 

pCM433, a vector generated by Christopher Marx for the purpose of “in-out” allelic exchange, 

containing sacB and a resistance cassette for the antibiotics ampicillin, chloramphenicol, and 

tetracycline. The full “in-out” allelic exchange procedure is represented graphically in Figure 4, 

adapted from Marx (2008). Two different strategies were used in different attempts to insert the 

knockout plasmid (pAB274) into M. extorquens CM4: triparental mating and electroporation. 
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Figure 4: Graphical representation of "in-out" allelic exchange using pCM433, as is used here to generate tetR knockouts to 
derepress sqhC transcription (adapted from Marx 2008) 

Triparental Mating 

 Triparental mating transfers a plasmid from one bacterium into another using a “helper 

strain” capable of conjugation and DNA transfer. The helper strain first accepts the plasmid from 

the donor strain and then transfers it into the target strain. In this case, the donor strain was E. 

coli containing pAB274, the helper strain was E. coli containing pRK2073, and the target strain 

was M. extorquens CM4. Each were first grown overnight in shaking incubators, the bacteria 
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containing pAB274 in 10 ml Luria broth (LB) and 10 µl tetracycline at 37ºC, the bacteria 

containing pRK2073 in 10 ml LB and 10 µl streptomycin at 37ºC, and CM4 in 10 ml hypho and 

200 µl succinate at 30ºC. These were then centrifuged, their supernatants were poured off, and 

roughly equal amounts of bacteria were resuspended, combined, and dispensed together, without 

spreading, on nutrient agar. This plate incubated on the benchtop overnight before all of its 

contents were suspended in molecular grade water and used in selective plating, as explored 

below. 

Electroporation 

 Electroporation forces bacteria to take up a plasmid by electrically shocking the bacteria, 

disrupting the cellular envelope so that the plasmid can enter. This requires treating the bacteria 

to make them “electrocompetent” so that they are not killed by the electricity. For this 

experiment, electrocompetent M. extorquens CM4 was previously prepared by Jeremy 

Pomerantz. However, the knockout plasmid, pAB274, needed to be extracted from E. coli. To 

this end, E. coli containing pAB274 was grown in 10 ml LB and 10 µl each chloramphenicol and 

tetracycline in a shaking incubator set to 30ºC for three days. It was then miniprepped using 

Promega’s PureYield Plasmid Miniprep System, resulting in 117 ng/µl pAB274 DNA. On ice, 1 

µl pAB274 was pipette-mixed with 40 µl electrocompetent M. extorquens CM4, which had been 

thawed on ice. The mixture was then transferred to a pre-chilled electroporation cuvette with a 

0.1 cm electrode gap. The cuvette was wiped clean and inserted into the electroporation device, 

then pulsed at 1.8 kV for 3.70 ms (the Ec1 setting). The cuvette was removed and 1 ml SOC 

medium was immediately added. Then, the mixture was transferred to a 1.5 ml tube and 

incubated, shaking, at 30ºC for 1 hour. This was then plated on 25 ml agar from a batch of 300 

ml hypho + 1410 µl 20% succinate + 6 g agar + 300 µl tetracycline (HSTet plates) and incubated 

at 30ºC until colonies grew for selective plating. 
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Selective Plating 

 There were many iterations of this process from many attempts at triparental mating and 

electroporation. What follows is just one example of timing and number of colonies picked, but 

the general procedure remained the same. Four days after electroporation, 16 colonies were 

picked from the electroporation plates and restreaked on new HSTet plates. 19 days later, once 

enough colonies had grown large enough, 14 colonies from these plates were picked and 

restreaked onto new HSTet plates once again. After 13 more days, 2 colonies from these plates 

were picked and grown in flasks containing 10 ml hypho and 200 µl 20% succinate for 4.5 hours. 

The flasks’ contents were centrifuged at 5000 rpm for 10 minutes, the supernatant was poured 

off, and the cell pellets were resuspended in 200 µl molecular grade water. These were plated on 

hypho agar with 5% by volume sucrose and 0.1% by volume succinate. After three days, 24 

colonies were picked from these plates and restreaked on both HS and HSTet plates. 

Knockout Confirmation 

Three days after plating on HS and HSTet, 22 colonies that grew on HS alone were 

picked with autoclaved toothpicks, swirled into 50 µl molecular grade water, and processed at 

98ºC for 10 minutes in order to extract the DNA. Polymerase chain reaction (PCR) was run on 

these samples as in Table 1 below, amplifying the region around the tetR gene that was intended 

to be knocked out using primers previously generated by Alexander S. Bradley. PCR products 

were subjected to gel electrophoresis for 15 minutes at 90 V on a 1.5% agarose gel (0.45 g 

agarose in 30 µl TAE buffer and 3 µl SYBR safe stain) in TAE buffer. 25 µl of PCR product 

were run with 4 µl BioLabs loading dye purple (6X) for all samples, and those which could have 

been knockouts were run the same way again using the remaining 25 µl of PCR product, 

alongside a wild-type control. The second resulting gel is pictured in Figure 5 below. The wild-

type PCR product is expected to be ~800 bp long, and the knockout ~200 bp. Lane I appeared to 
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be a knockout. Its bands were cut out of both gels and stored in the same 1.5 ml tube. These gel 

bands were dissolved and cleaned using the Invitrogen PureLink PCR Purification kit, resulting 

in 0.5 ng/µl DNA. PCR was run on this DNA using the same procedure and primers as on the 

DNA extracted directly from the bacteria, resulting in 10.3 ng/µl DNA. This DNA was 

sequenced by Eurofins and found not to be the knockout. However, sequencing results were not 

obtained until after Strain I’s lipids were extracted for comparison to those of wild-type M. 

extorquens CM4, as though it were the tetR knockout. 

 

Table 1: Master Mix and PCR program used to amplify the region that would contain tetR in order to identify knockouts 
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Figure 5: Gel electrophoresis results for select potential knockouts. The boxed band in Lane I is the right length for a tetR 
knockout, so it was cut out and the associated bacteria were treated as a successful knockout and renamed RB01. The band 

labeled wt in Lane M is the right length for a wild-type CM4 which still contains tetR. 

Lipid Extraction and Comparison 
 This procedure was intended to be performed on the tetR knockout, but this was never 

done successfully. However, it was performed on Strain I under the impression that this was the 

knockout. Strain I was grown in separate flasks containing 10 ml hypho and either 100 µl 20% 

succinate, 100 µl 2.96 M methylamine, or 100 µl 2.96 M methanol in an incubating shaker set to 

30oC for four days, then 25 µl from each were transferred to flasks containing 10 ml hypho and 

either 200 µl 20% succinate, 100 µl 2.96 M methylamine, or 100 µl 2.96 M methanol, 

respectively. Wild-type CM4 from freezer stock was grown in flasks containing the same. Both 

grew for three days in a 30ºC incubating shaker. 

 125 µl from each flask were reserved for growth curve generation, discussed below. The 

remainder of each flask was centrifuged 5 min at 5000 rpm and the supernatant was poured off. 

The cell pellet was resuspended in the remaining supernatant and Bligh-Dyer lipid extraction 

was performed as follows. In 4 ml glass vials, 100 µl chromasolv water, 250 µl chloroform, and 

500 µl methanol were added to the cell pellets. The vials were sonicated for 15 min to break up 
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cellular material. 250 µl each water and chloroform were added to each vial, mixed by swirling, 

and allowed to separate overnight at -20ºC. The bottom layer of chloroform and extracted lipids 

was extracted into fresh 4 ml vials. Another 250 µl chloroform was added to the remaining 

material and the chloroform layer again extracted to the new vial. This was repeated one more 

time. Since some organic material remained, each chloroform sample was run through a filtering 

6 in Pasteur pipet containing glass wool plugs and combusted sand, rinsed with pure chloroform. 

Each sample was then dried under nitrogen gas and resuspended in 500 µl dichloromethane 

(DCM). 

 50 µl of the samples in DCM were transferred to gas chromatography vial inserts. 15 µl 

pyridine and 20 µl N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) were added to each 

sample, all were dried under nitrogen gas, and all were run on the Agilent gas chromatograph-

mass spectrometer (GC-MS) using the ABPlantwax5_50M program previously established by 

the Bradley Lab for use on bacterial lipids. 

The remainder of each sample in DCM was subjected to bacteriohopanepolyol cleavage 

in order to examine the side chains of hopanoids alone. The samples were dried under nitrogen 

gas. 1 ml of periodic acid solution (100 mg periodic acid per 1 ml 8:1 tetrahydrofuran:water) was 

added to each sample, and the solutions were left to sit for an hour. 1 ml dichloromethane 

(DCM)-extracted deionized (DI) water was then added to each sample. 1 ml 4:1 diethyl 

ether:hexane was added to each sample, then the top (organic) layer was extracted into a 15-ml 

vial. This was repeated three more times. Anhydrous Na2SO4 was added to the organics from 

each sample to remove water. 3 ml sodium borohydride solution (100 mg NaBH4 in 3 ml 

methanol) were added to each sample and the solution was allowed to sit for 4 hours at room 

temperature. 1.5 ml potassium phosphate solution (100 mM in DCM-extracted DI water) were 
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added to each sample. 1 ml 4:1 hexane:diethyl ether was added to each sample, and the top 

(organic) layer was extracted into 12 ml vials. This step was repeated two more times. The 

samples were dried under nitrogen gas, then transferred to GC-MS microvials twice using 100 µl 

hexane. This was then evaporated under nitrogen gas and 15 µl pyridine and 20 µl acetic 

anhydride were added to each, and all were run on the Agilent gas chromatograph-mass 

spectrometer (GC-MS) using the ABPlantwax5_50M program. 

Growth Curve Generation 
 The 125 µl reserved from each flask of CM4 and Strain I on each substrate were 

reinoculated into flasks containing 10 ml hypho and 25 µl of their respective substrates (20% 

succinate, 2.96 M methylamine, or 2.96 M methanol). Blanks of 10 ml pure hypho and 10 ml 

hypho with 25 µl substrate were also prepared. 640 µl from each flask were added to various 

wells in a 48-well plate as in Table 2 below, which was generated randomly. “RB01” refers to 

strain I, which was believed to be the tetR knockout when growth curves were generated. The 

plate was loaded into the Biotech Epoch 2 plate reader and run, agitating, at 30ºC for 50 hours, 

and the optical density at a wavelength of 600 nm (OD600) of each well was read every 15 

minutes to construct growth curves. 

 

Table 2: The array of samples and controls incubated on the plate reader for growth curve generation. M refers to cultures 
grown on methanol, S to cultures grown on succinate, and Y to cultures grown on methylamine. 

Heterologous Expression of sqhC1 and sqhC2 from CM4 in CM3945 
 In order to compare the lipid products of CM4’s SqhC1 and SqhC2, their genes will be 

expressed individually in CM3945, an altered form of the strain M. extorquens PA1 (which is 
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closely related to CM4) that has had its native sqhC gene removed. To do this, the sqhC1 and 

sqhC2 genes of CM4 need to be made into plasmids, these plasmids replicated in E. coli, the 

genes (from plasmid form) ligated into inducible expression plasmids, the new expression 

plasmids grown in E. coli again, and the expression plasmids transferred into CM3945 using 

electroporation or tri-parental mating. At the time of writing, sqhC1 and sqhC2 may be in 

expression plasmids in E. coli, but the organisms are growing less robustly than expected. 

CM4 was grown from freezer stock in flasks of 10 ml hypho and 47 µl 20% succinate for 

two days, then its whole genome was isolated using the Promega Wizard Genomic DNA 

Purification kit. PCR was performed as in Table 3 below using primers generated by Alexander 

Bradley to isolate sqhC1 and sqhC2. The amplified DNA was run on 1% agarose gel in TAE 

buffer for 50 minutes at 90 V, resulting in Figure 6 below. 85A-C represent sqhC1 and should be 

2004 bp, and 86A-C represent sqhC2 and should be 1938 bp. All are the expected length, so the 

remaining PCR product was cleaned using the Promega Wizard SV Gel and PCR Clean-Up 

System, quantified, and those which were most abundant (85C at 99.7 ng/µl and 86C at 135 

ng/µl) were sequenced by Eurofins. The 85C and 86C sequences, available in Supplemental 

Material, align to sqhC1 and sqhC2, respectively, in CM4, as desired. Therefore, they were used 

moving forward. 

 

Table 3: Master Mix and PCR program used to amplify the regions containing sqhC1 and sqhC2. 
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Figure 6: Gel electrophoresis results showing 85A-C (sqhC1) and 86A-C (sqhc2) both at roughly 2kb, as they should be, 
confirming that the correct regions have been amplified. 

4 µl of 85C and 86C PCR products were used with the Invitrogen Zero Blunt TOPO PCR 

Cloning Kit to make pAB269 and pAB270, plasmid forms of sqhC1 and sqhC2, respectively. 

These plasmids were each transformed into Top 10 competent E. coli by mixing 5 µl of 

rehydrated plasmids with tubes of Top 10, letting the mixtures sit on ice for 30 minutes, heat-

shocking them in a 42ºC water bath for 30 seconds, adding 250 µl SOC medium to each on an 

ice bath, shaking and incubating the mixtures for 60 minutes at 30ºC, and plating 25 µl, 50 µl, 

100 µl, and the balance of the mixtures on separate plates of LB agar with kanamycin. These 

plates were allowed to grow for three days, then three colonies each of E. coli containing 

pAB269 and E. coli containing pAB270 were picked and added to separate flasks of 10 ml LB 

and 10 µl kanamycin. These were incubated, shaking, at 37ºC for one day. 200 µl from these 

flasks were reserved for freezer stocks, and plasmids were isolated from the remainder of each 

flask using the Promega PureYield Plasmid Miniprep System. The pAB269 and pAB270 
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plasmids were sequenced using primers for sqhC1 and sqhC2, respectively, and confirmed to 

contain their respective genes. 

E. coli containing pLC290, a plasmid used for inducible expression of genes, was grown 

from freezer stock overnight in a flask of 10 ml LB and 10 µl kanamycin. pLC290 was isolated 

from this flask using the Promega PureYield Plasmid Miniprep System. pAB269 and some of 

pLC290 were digested with KpnI-HF and BglII restriction enzymes according to New England 

Biolabs’ guidelines, and pAB70 and some more of pLC290 were digested with KpnI-HF and 

EcoRI-HF restriction enzymes according to New England Biolabs’ guidelines. These were run 

on 1.2% agarose gel in TAE buffer for 50 minutes at 90 V, resulting in Figure 7 and Figure 8 

below. Digested pAB269 and pAB270 were expected to be ~2 kb, and both pLC290 digests were 

expected to be ~8 kb. These are visible for all but pAB269, but all of these regions were cut out 

of the band anyway. 

The gel bands were all cleaned using the Thermo PureLink PCR Purification Kit, and all 

were confirmed to contain DNA using the NanoDrop (73.9 ng/µl pAB269, 84.6 ng/µl pAB270, 

90.4 ng/µl pLC290 cut for pAB269, and 97.1 ng/µl pLC290 cut for pAB270). The pairs cut with 

the same restriction enzymes (pAB269 and pLC290, pAB270 and pLC290) were ligated using 

the Thermo Rapid Ligation Kit and transformed into 5α competent E. coli using the same 

procedure outlined previously for the transformation of pAB269 and pAB270 into Top 10 

competent E. coli. Several colonies have been picked from these plates and grown in 10 ml LB 

and 10 µl kanamycin, both at 37ºC and 30ºC, but none have grown sufficiently, even after 

several days, which is extremely unusual for E. coli. 
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Figure 7: Gel electrophoresis results for pAB269 digested with KpnI and BglII and pAB270 digested with KpnI and EcoRI. Bands 
are visible at 2 kb for pAB270 (boxed), but not for pAB269. Both regions were excised anyway. 

pAB269 KpnI, BglII pAB270 KpnI, EcoRI 

2kb 
2kb 
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Figure 8: Gel electrophoresis results for pLC290 digested with KpnI and BglII and pLC290 digested with KpnI and EcoRI. Bands 
are visible at 8 kb for both (boxed) and both were excised. 

sqhC1 and sqhC2 Knockout Plasmid Generation 
 Another attempt to compare the products of CM4’s sqhC1 and sqhC2 was made by 

knocking out sqhC1 and sqhC2 individually in CM4. “In-out” allelic exchange, outlined above 

for the tetR knockout, is also used in this case. However, knockout plasmids must first be 

generated from scratch for this experiment. Synthetic plasmids containing the knockout 

EcoRI 

8kb 8kb 
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sequences for sqhC1 and sqhC2 (pAB275 and pAB276, respectively) were ordered from 

GenScript, but these sequences must be moved into pCM433 for “in-out” allelic exchange. To 

this end, pAB275 and pAB276 were transformed into 5α competent E. coli by mixing 5 µl of 

rehydrated plasmids with tubes of 5α, letting the mixtures sit on ice for 30 minutes, heat-

shocking them by putting the tubes in a 42ºC water bath for 30 seconds, adding 250 µl SOC 

medium to each on an ice bath, shaking and incubating the mixtures for 60 minutes at 30ºC, and 

plating 25 µl, 50 µl, 100 µl, and the balance of the mixtures on separate plates of LB agar with 

kanamycin. These plates were allowed to grow for five days, then a single colony for each 

plasmid was inoculated into flasks containing 10 ml LB and 10 µl kanamycin, which were 

incubated, shaking, for one day at 30ºC. Freezer stocks were made of these by centrifuging the 

flasks’ contents for 10 minutes at 5000 rpm, pouring off the supernatant, resuspending the pellets 

in 0.5 ml 8% DMSO in hypho, and freezing 0.5 ml of each at -80ºC. 

 Each of the freezer stocks of pAB275 and pAB276 in E. coli were grown overnight at 

30ºC in a shaking incubator in flasks containing 10 ml LB and 10 µl kanamycin. pCM433, the 

plasmid generated by Christopher Marx for “in-out” allelic exchange, also in E. coli, was also 

grown overnight from freezer stock in a shaking incubator in a flask containing 10 ml LB and 10 

µl each ampicillin, chloramphenicol, and tetracycline. All were miniprepped using Promega’s 

PureYield Plasmid Miniprep System, resulting in 219.7 ng/µl pAB275, 254.2 ng/µl pAB276, and 

528.7 ng/µl pCM433. It is intended to cut all of these plasmids with AatII and NotI, then ligate 

both pAB275 and pAB276 with pCM433 to form the knockout plasmids pAB277 and pAB278, 

respectively, but existing attempts have failed to generate sufficient amounts of cut plasmids. 

However, once pAB277 and pAB278 have been generated, they will be used to knock out sqhC1 
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and sqhC2, respectively, using the procedure previously explored for knocking out tetR, and to 

compare the lipid profiles of each to that of wild-type CM4. 

Results 

Phylogenetic Trees 
 The phylogenetic tree of both sqhC1 and sqhC2 genes is pictured in Figure 9 below. The 

full names of each strain present in this tree can be found in Supplemental Material. sqhC1 genes 

are shown in orange, and sqhC2 genes are shown in blue. Each sqhC2 gene has a tetR gene 

immediately upstream. However, one strain, Bradyrhizobium elkanii USDA 76, has two copies 

of sqhC, shown in pink, neither of which have an upstream tetR. sqhC genes in strains that only 

have one copy of sqhC are shown in black. Most sqhC2 genes form five clades, with the 

exception of that of Syntrophobacter fumaroxidans MPOB (which is the only Syntrophobacter 

strain examined that has an sqhC2 gene). One clade contains the two Methylobacterium strains 

examined. Another contains only all of the Frankia strains examined, another only all of the 

Zymomonas strains, and another only all of the Cupriavidus strains. The remaining clade 

contains both all of the Geobacter and Pelobacter strains, but no others. The Cupriavidus and 

Geobacter/Pelobacter clades, seen on the bottom right in Figure 9, are separated by only one 

branch point, suggesting that they may be closely related to one another. sqhC1 genes form 

clades within their genera as well, but these clades also contain the solo sqhC genes within the 

genera. Altogether, this suggests that several genera have independently evolved sqhC2 genes 

accompanied by tetR which are orthologous to one another. This, in turn, suggests that this 

sqhC2-tetR system may hold an evolutionary advantage, in order for it to have evolved several 

times independently and been retained each time. 
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Figure 9: A phylogenetic tree for all sqhC genes gathered. sqhC1 genes are shown in orange, and sqhC2 genes are shown in blue. 
Each sqhC2 gene has a tetR gene immediately upstream. Bradyrhizobium elkanii USDA 76, has two copies of sqhC, shown in 

pink, neither of which have an upstream tetR. sqhC genes in strains that only have one copy of sqhC are shown in black 

 Phylogenetic trees were also constructed of sqhC2 and its upstream tetR, shown in Figure 

10 and Figure 11 below, respectively. The same abbreviations found in Supplemental Material 

are used in these trees. On visual inspection, these trees appear similar, with genera again 

forming clades in both, but they are not identical. For quantitative comparison, a weighted 

Robinson-Foulds (RF) metric was calculated to compare the two trees. It is 3.7645. Given that 

the RF value for two randomly-generated 22-leaf trees is 21.9959, this was taken as evidence 
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that there is, indeed, significant similarity between the sqhC2 and tetR trees. This suggests that 

sqhC2 and its upstream tetR coevolved, supporting the proposition that this tetR gene is involved 

in the regulation of sqhC2. 

 

Figure 10: A phylogenetic tree of sqhC2 genes. Similar genera-based clusters are seen here as in the phylogenetic tree of all of 
the sqhC genes. 

 

Figure 11: A phylogenetic tree of tetR genes associated with sqhC2. Similar genera-based clusters are seen here as in the sqhC 
phylogenetic trees, but this tree is not identical to the sqhC2 tree. 
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tetR Knockout Failure 
 Despite nine months of effort, all attempts to knock out the tetR gene in M. extorquens 

CM4 were met with failure. There are several possible reasons for this. One possibility is that the 

regulation TetR provides to sqhC2 is essential. This could be true, especially since sqhC2 seems 

to always be accompanied by an upstream tetR. However, there are other possibilities. “In-out” 

allelic exchange, even when successful, ends with both colonies of the mutant and colonies 

which have reverted to wild-type. Simple bad luck in picking colonies could have resulted in 

missing the knockout. However, I do not believe this to be the case, based on the number of trials 

and picked colonies. On a slightly different tack, it is possible that knockout generation failed, 

not for any grand biological reason, but because these procedures are simply imperfect, and can 

never be perfect. While the first possibility would be interesting, the last is more likely, and, for 

this reason, attempts to knock out tetR in CM4 will continue. 

Discussion 
 The work presented here is only a fraction of this project, which has been through several 

cycles of activity since 2014. Concrete results are admittedly sparse here, but the project will 

continue, and this work will be of use to it. In silico phylogenetic analysis has provided evidence 

to support an evolutionary advantage to the duplicate copy of the sqhC gene. It has additionally 

provided evidence of the coevolution of sqhC2 and its upstream tetR, indicating that this TetR 

likely does regulate sqhC2. The failure to knock out tetR in CM4 could indicate that this 

regulation is itself evolutionary advantageous, or even necessary, but there is not enough 

evidence to state this conclusively. Existing work presented here can be used in continued 

attempts to knock out tetR. The same is true for attempts at heterologous expression of sqhC1 

and sqhC2 in CM3945, as well as attempts to knock out these genes in CM4. 
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