
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Spring 5-15-2014

Global EDF Scheduling for Parallel Real-Time Tasks Global EDF Scheduling for Parallel Real-Time Tasks

Jing Li
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Jing, "Global EDF Scheduling for Parallel Real-Time Tasks" (2014). McKelvey School of Engineering
Theses & Dissertations. 1.
https://openscholarship.wustl.edu/eng_etds/1

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/1?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Washington University in St. Louis

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Chenyang Lu

Kunal Agrawal
Roger Chamberlain

Global EDF Scheduling for Parallel Real-Time Tasks

by

Jing Li

A thesis presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

Master of Science

May 2014
Saint Louis, Missouri

copyright by

Jing Li

2014

Contents

List of Tables . iv

List of Figures . v

Acknowledgments . vi

Abstract . vii

1 Introduction . 1

2 Related Work . 5

3 Task Model and Definitions . 7

4 Capacity Augmentation Bound of 4− 2
m

for GEDF 9
4.1 Notation . 9
4.2 Proof for Capacity Augmentation Bound . 11

5 Fixed Point Schedulability Test . 20
5.1 Basic Schedulability Test . 20
5.2 Improving the Carry-In Work Calculation 23
5.3 Improving the Calculation for Completion Time 25

6 Resource Augmentation Bound of 2− 1
m

for GEDF 26
6.1 Proof for Resource Augmentation Bound . 26
6.2 An Example Providing an Intuition for the Proof 30

7 Lower Bound on Capacity Augmentation Bound of GEDF 32

8 Simulation Evaluation . 36
8.1 Task Sets and Experimental Setup . 36
8.2 Simulation Results . 38

8.2.1 Erdos-Renyi Method . 38
8.2.2 Synchronous Method . 42

9 Parallel GEDF Platform . 43

ii

9.1 Background . 43
9.1.1 OpenMP Overview . 44
9.1.2 LITMUSRT Overview . 45

9.2 PGEDF Platform Implementation . 47
9.2.1 Programming Interface . 47
9.2.2 PGEDF Operation . 48

10 Experimental Evaluation of PGEDF . 51
10.1 Experimental Machines . 51
10.2 Task Set Generation . 52
10.3 Baseline Platform . 53
10.4 Experiment Results . 54

11 Conclusions . 59

iii

List of Tables

10.1 Task Set Characteristics . 52

iv

List of Figures

3.1 Example task with work Ci = 8 and critical-path length Li = 6. 8

4.1 Example task set execution trace . 10

6.1 Examples of task set execution on 2 cores. 31

7.1 Structure of the task set that demonstrates GEDF does not provide a capacity
augmentation bound less than (3 +

√
5)/2 33

7.2 Execution of the task set under GEDF at speed 2 34

8.1 Failure ratio of GEDF (solid line) vs. DECOMP (dashed line) for G(n, p)
tasks with different task set utilization percentages (speedups). The left three
figures show the results for 64-core, and right three for 16-core. From top
down, figures show results with small, medium and large values of p respectively. 39

8.2 The left figure shows the effect of varying p on the speedup required to make
all task sets schedulable.The right figure shows the effect of varying m on the
speedup required to make all task sets schedulable. (harmonic period) . . . 40

8.3 Performance of GEDF (solid line) vs. DECOMP (dashed line) for different
values of m. GEDF is always better than DECOMP. In general, increasing
the number of processors generally increases failure rates. 41

9.1 Task Program Format . 47
9.2 Format of the Configuration File . 48
9.3 Main Structure of Each Real-Time Task in PGEDF 49

10.1 Failure ratio of PGEDF vs. RT-OpenMP with different percentages of uti-
lization (speedup) for 14-core task sets with low-slack and harmonic periods. 55

10.2 Failure ratio of PGEDF vs. RT-OpenMP with different percentages of uti-
lization (speedup) for 14-core task sets with high-slack and harmonic periods. 55

10.3 Failure ratio of PGEDF vs. RT-OpenMP with different percentages of uti-
lization (speedup) for 14-core task sets with low-slack and high-parallelism. . 56

10.4 Failure ratio of PGEDF vs. RT-OpenMP with different percentages of uti-
lization (speedup) for 7-core task sets. 57

v

Acknowledgments

I would like to first thank both my academic advisors, Dr. Chenyang Lu and Dr. Kunal

Agrawal, who has been guiding my study and teaching me how to do great research from

big pictures (like finding important and hard problems to tackle) to every detail (such as

presentation skills, writing skills and proving techniques). I am grateful to Dr. Christopher

Gill, who is extremely supportive in all of my researches.

I am also thankful for the many collaborators who made this research possible: Abusayeed

Saifullah, who started the research on parallel real-time scheduling and led me into this

research area; David Ferry, who started the implementation of the first parallel real-time

platform and also who I have been closely working with and learn from; Kevin Kieselbach,

who helped me to build the platform interface and framework; Zheng Luo, who helped me

to implement the prototype system and to run extensive measurements to test the system.

Finally, this research was supported in part by NSF grants CCF-1136073 (CPS), CCF-

1439478 and CCF-1337218.

Jing Li

Washington University in Saint Louis

May 2014

vi

ABSTRACT OF THE THESIS

Global EDF Scheduling for Parallel Real-Time Tasks

by

Jing Li

Master of Science in Computer Science

Washington University in St. Louis, May 2014

Research Advisor: Professor Chenyang Lu, Professor Kunal Agrawal

As multicore processors become ever more prevalent, it is important for real-time programs

to take advantage of intra-task parallelism in order to support computation-intensive appli-

cations with tight deadlines. In this thesis, we consider the Global Earliest Deadline First

(GEDF) scheduling policy for task sets consisting of parallel tasks. Each task can be rep-

resented by a directed acyclic graph (DAG) where nodes represent computational work and

edges represent dependences between nodes.

In this model, we prove that GEDF provides a capacity augmentation bound of 4− 2
m

and a

resource augmentation bound of 2− 1
m

. The capacity augmentation bound acts as a linear-

time schedulability test since it guarantees that any task set with total utilization of at

most m/(4− 2
m

) where each task’s critical-path length is at most 1/(4− 2
m

) of its deadline

is schedulable on m cores under GEDF. In addition, we present a pseudo-polynomial time

fixed-point schedulability test for GEDF; this test uses a carry-in work calculation based on

the proof for the capacity bound.

vii

Finally, we present and evaluate a prototype platform — called PGEDF — for scheduling

parallel tasks using GEDF. PGEDF is built by combining the GNU OpenMP runtime system

and the LITMUSRT operating system. This platform allows programmers to write parallel

OpenMP tasks and specify real-time parameters such as deadlines for tasks.

We perform two kinds of experiments to evaluate the performance of GEDF for parallel

tasks. (1) We run numerical simulations for DAG tasks. (2) We execute randomly generated

tasks using PGEDF. Both sets of experiments indicate that GEDF performs surprisingly

well and outperforms an existing scheduling techniques that involves task decomposition.

viii

Chapter 1

Introduction

During the last decade, the increase in performance processor chips has come primarily

from increasing numbers of cores. This has led to extensive work on real-time scheduling

techniques that can exploit multicore and multiprocessor systems. Most prior work has

concentrated on inter-task parallelism, where each task runs sequentially (and therefore

can only run on a single core) and multiple cores are exploited by increasing the number

of tasks. This type of scheduling is called multiprocessor scheduling . When a model is

limited to inter-task parallelism, each individual task’s total execution requirement must be

smaller than its deadline since individual tasks cannot run any faster than on a single-core

machine. In order to enable tasks with higher execution demands and tighter deadlines, such

as those used in autonomous vehicles, video surveillance, computer vision, radar tracking and

real-time hybrid testing [54], we must enable parallelism within tasks.

In this paper, we are interested in parallel scheduling, where in addition to inter-task paral-

lelism, task sets contain intra-task parallelism, which allows threads from one task to run

in parallel on more than a single core. While there has been some recent work in this area,

many of these approaches are based on task decomposition [43, 64, 63], which first decom-

poses each parallel task into a set of sequential subtasks with assigned intermediate release

times and deadlines, and then schedules these sequential subtasks using a known multipro-

cessor scheduling algorithm. In this work, we are interested in analyzing the performance of

global EDF (GEDF) schedulers without any decomposition.

We consider a general task model, where each task is represented as a directed acyclic

graph (DAG) and where each node represents a sequence of instructions (thread) and

each edge represents a dependency between nodes. A node is ready to be executed when

1

all its predecessors have been executed. GEDF works as follows: for ready nodes at each

time step, the scheduler first tries to schedule as many jobs with the earliest deadline as it

can; then it schedules jobs with the next earliest deadline, and so on, until either all cores

are busy or no more nodes are ready.

Compared with other schedulers, GEDF has benefits, such as automatic load balancing. Ef-

ficient and scalable implementations of GEDF for sequential tasks are available for Linux [47]

and LITMUSRT [16], which can be used to implement GEDF for parallel tasks if decompo-

sition is not required. Prior theory analyzing GEDF for parallel tasks is either restricted to

a single recurring task [10] or considers response time analysis for soft-real time tasks [51].

In this paper, we consider task sets with n tasks and analyze their schedulability under a

GEDF scheduler in terms of augmentation bounds.

We distinguish between two types of augmentation bounds, both of which are called “resource

augmentation” in the previous literature. By standard definition, a scheduler S provides a

resource augmentation bound of b if the following condition holds: if an ideal scheduler

can schedule a task set on m unit-speed cores, then S can schedule that task set on m cores

of speed b. Note that the ideal scheduler (optimal schedule) is only a hypothetical

scheduler, meaning that if a feasible schedule ever exists for a task set then this ideal scheduler

can guarantee to schedule it. Unfortunately, Fisher et al. [32] proved that optimal online

multiprocessor scheduling of sporadic task systems is impossible. Since there may be no

way to tell whether the ideal scheduler can schedule a given task set on unit-speed cores, a

resource augmentation bound may not provide a schedulability test.

Therefore, we distinguish resource augmentation from a capacity augmentation bound

that can serve as an easy schedulability test. If on unit-speed cores, a task set has total

utilization of at most m and the critical-path length of each task is smaller than its deadline,

then scheduler S with capacity augmentation bound b can schedule this task set on m

cores of speed b. Note that the ideal scheduler cannot schedule any task set that does

not meet these utilization and critical-path length bounds on unit-speed cores; therefore, a

capacity augmentation bound of b implies a resource augmentation bound of b. Capacity

augmentation bounds have the advantage that they directly lead to schedulability tests, since

one can easily check the bounds on utilization and critical-path length for any task set.

The contributions presented in this paper are as follows:

2

1. For a system with m identical cores, we prove a capacity augmentation bound of 4− 2
m

(which approaches 4 as m approaches infinity) for sporadic task sets with implicit

deadlines — the relative deadline of each task is equal to its period. Another way to

understand this bound is: if a task set has total utilization at most m/(4− 2
m

) and the

critical-path length of each task is at most 1/(4 − 2
m

) of its deadline, then it can be

scheduled using GEDF on unit-speed cores.

2. While the capacity augmentation bound functions as a linear-time schedulability test,

we further provide a fixed-point schedulability test that may admit more task sets but

takes pseudo-polynomial time to compute.

3. For a system with m identical cores, we prove a resource augmentation bound of 2− 1
m

(which approaches 2 as m approaches infinity) for sporadic task sets with arbitrary

deadlines.

4. We also show that GEDF’s capacity bound for parallel task sets (even with implicit

deadlines) is lower bounded by 2 − 1
m

. In particular, we show example task sets with

utilization m where the critical-path length of each task is no more than its deadline,

while GEDF misses a deadline on m cores with speed less than 3+
√
5

2
≈ 2.618.

5. We conduct simulation experiments to show that the capacity augmentation bound

is safe for task sets with different DAG structures (as mentioned above, checking the

resource augmentation bound is difficult since we cannot compute the optimal sched-

ule). Simulations show that GEDF performs surprisingly well. All simulated random

task sets meet their deadlines with 50% utilization (core speed of 2). We also compare

GEDF with a scheduling technique that decomposes parallel tasks and then schedules

decomposed subtasks using GEDF [63]. For all of the DAG task sets considered in our

experiments, the GEDF scheduler without decomposition has better performance.

6. To demonstrate the feasibility of parallel GEDF scheduling in real systems, we im-

plement a prototype platform named PGEDF . PGEDF supports standard OpenMP

programs with parallel for-loops. Therefore, it supports a subset of DAGs — namely

synchronous tasks where the program consists of a sequence of segments which can

be parallel or sequential and parallel segments are represented using parallel for-loops.

While not as general as DAGs, these synchronous tasks constitute a large subset of in-

teresting parallel programs. PGEDF integrates the GNU OpenMP runtime system [60]

3

and LITMUSRT patched Linux kernel [16], where the former executes each task with

parallel threads and the latter is responsible for scheduling threads of all tasks under

GEDF scheduling.

7. We evaluate the performance of PGEDF with randomly generated synthetic task sets.

With those task sets, all deadlines are met when total utilization is less than 30%

(core speed of 3.3) in PGEDF. We compare PGEDF with an existing parallel real-

time platform, RT-OpenMP [30], which was also designed for synchronous tasks but

under decomposed fixed priority scheduling. We find that for most task sets, PGEDF

performs better.

In the rest of the paper, Chapter 2 reviews related work and Chapter 3 describes the DAG

task model with intra-task parallelism. Proof for a capacity augmentation bound of 4 − 2
m

and a fixed point schedulability test based on capacity augmentation bound are presented

in Chapters 4 and 5 respectively. We prove a resource augmentation bound of 2 − 1
m

in

Chapter 6. In Chapter 7, we present an example to show the lower bound on capacity bound

for GEDF. Chapter 8 shows the simulation results. Then we describe the implementation of

our PGEDF platform in Chapter 9 and evaluate it in Chapter 10. Finally, Chapter 11 gives

concluding remarks.

4

Chapter 2

Related Work

Most prior work on hard real-time scheduling atop multiprocessors has concentrated on

sequential tasks [22]. In this context, many sufficient schedulability tests for GEDF and other

global fixed priority scheduling algorithms have been proposed [3, 66, 34, 12, 8, 7, 44, 11, 13].

In particular, for implicit deadline hard-real time tasks, the best known utilization bound is

≈ 50% using partitioned fixed priority scheduling [4] or partitioned EDF [9, 52]; this trivially

implies a capacity bound of 2. [9] proved that global EDF has a capacity augmentation

bound of 2− 1/m for sequential tasks on multiprocessors.

Earlier work considering intra-task parallelism makes strong assumptions on task models [45,

20, 55]. For more realistic parallel tasks, e.g. synchronous tasks , Kato et al.[38] proposed a

gang scheduling approach. The synchronous model, a special case of the more general DAG

model, represents tasks with a sequence of multi-threaded segments with synchronization

points between them (such as those generated by parallel for-loops).

Most other approaches for scheduling synchronous tasks involve decomposing parallel tasks

into independent sequential subtasks, which are then scheduled using known multiprocessor

scheduling techniques, such as deadline monotonic [31] or GEDF [8]. For a restricted set of

synchronous tasks, Lakshmanan et al. [43] prove a capacity augmentation bound of 3.42 using

deadline monotonic scheduling for decomposed tasks. For more general synchronous tasks,

Saifullah et al. [64] proved a capacity augmentation bound of 4 for GEDF and 5 for deadline

monotonic scheduling. The decomposition strategy was improved in [58] for using less cores.

For the same general synchronous model, the best known augmentation bound is 3.73 [39] also

using decomposition. The decomposition approach in [64] was recently extended to general

DAGs [63] to achieve a capacity augmentation bound of 4 under GEDF on decomposed tasks

5

(note that in that work GEDF is used to schedule sequential decomposed tasks, not parallel

tasks directly). This is the best augmentation bound known for task sets with multiple

DAGs. For scheduling synchronous tasks withough decomposition, [19] and [6] presented

schedulability tests for GEDF and partitioned fixed priority scheduling respectively.

More recently, there has been some work on scheduling general DAGs without decomposition.

Nogueira et al. [59] explored the use of work-stealing for real-time scheduling. The paper

is mostly experimental and focused on soft real-time performance. The bounds for hard

real-time scheduling only guarantee that tasks meet deadlines if their utilization is smaller

than 1. Liu and Anderson [51] analyzed the response time of GEDF without decomposition

for soft real-time tasks. A resource augmentation bound of 2 − 1
m

for GEDF was proved

for a staged DAG model [5]. Baruah et al. [10] proved that when the task set is a single

DAG task with arbitrary deadlines, GEDF provides a resource augmentation bound of 2.

For multiple DAGs, Bonifaci et al. [14] also show the same resource augmentation bound

2 − 1
m

, but do not consider capacity augmentation. They also proved that global deadline

monotonic scheduling has a resource augmentation bound of 3− 1
m

.

Various platforms support sequential real-time tasks on parallel machines [16, 47]. Our plat-

form prototype, PGEDF, is based on LITMUSRT [16]. As for parallel tasks, we are aware of

two systems [39, 30] that support parallel real-time tasks based on different decomposition

strategies. Kim et al. [39] used a reservation-based OS to implement a system that can

run parallel real-time programs for an autonomous vehicle application, demonstrating that

parallelism can enhance performance for complex tasks. Ferry et al. [30] developed a par-

allel real-time scheduling service on standard Linux. However, since both systems adopted

task decomposition approaches, they require users to provide exact task structures and sub-

task execution time details in order to decompose tasks correctly. The system presented

[30] also requires modifications to the compiler and runtime system to decompose, dispatch

and execute parallel applications. The platform prototype presented here does not require

decomposition or such detailed information.

Scheduling parallel tasks without deadlines has been addressed by parallel-computing re-

searchers [62, 26, 23, 1]. Soft real-time scheduling has been studied for various optimization

criteria, such as cache misses [17, 2], makespan [67] and total work done by tasks that meet

deadlines [42].

6

Chapter 3

Task Model and Definitions

This chapter presents a model for DAG tasks. We consider a system with m identical unit-

speed cores. The task set τ consists of n tasks τ = {τ1, τ2, ..., τn}. Each task τi is represented

by a directed acyclic graph (DAG), and has a period Pi and deadline Di. We represent the

j-th subtask of the ith task as node W j
i . A directed edge from node W j

i to W k
i means that

W k
i can only be executed after W j

i has finished executing. A node is ready to be executed

as soon as all of its predecessors have been executed. Each node has its own worst-case

execution time Cj
i . Multiple source nodes and sink nodes are allowed in the DAG, and the

DAG is not required to be fully connected. Figure 3.1 shows an example of a task consisting

of 5 subtasks in the DAG structure.

For each task τi in task set τ , let Ci =
∑

j C
j
i be the total worst-case execution time on a

single core, also called the work of the task. Let Li be the critical-path length (i.e. the

worst-case execution time of the task on an infinite number of cores). In Figure 3.1, the

critical-path (i.e. the longest path) starts from node W 1
1 , goes through W 3

1 and ends at node

W 4
1 , so the critical-path length of DAG W1 is 1 + 3 + 2 = 6. The work and the critical-path

length of any job generated by task τi are the same as those of task τi.

We also define the notion of remaining work and remaining critical-path length of

a partially executed job. The remaining work is the total work minus the work that has

already been done. The remaining critical-path length is the length of the longest path in

the unexecuted portion of the DAG (including partially executed nodes). For example, in

Figure 3.1, if W 1
1 and W 2

1 are completely executed, and W 3
1 is partially executed such that

1 unit (out of 3) of work has been done for it, then the remaining critical-path length is

2 + 2 = 4.

7

Figure 3.1: Example task with work Ci = 8 and critical-path length Li = 6.

Nodes do not have individual release offsets and deadlines when scheduled by the GEDF

scheduler; they share the same absolute deadline of their jobs. Therefore, to analyze the

GEDF scheduler, we do not require any knowledge of the DAG structure beyond the total

worst-case execution time Ci, deadline Di, period Pi and critical-path length Li. We also

define the utilization of a task τi as ui = Ci

Pi
.

On unit speed cores, a task set is not schedulable (by any scheduler) unless the following

conditions hold:

• The critical-path length of each task is less than its deadline.

Li ≤ Di (3.1)

• The total utilization is smaller than the number of cores.∑
i

ui ≤ m (3.2)

In addition, we denote Jk,a as the a-th job instance of task k in system execution. For

example, the i-th node of Jk,a is represented as W i
k,a. We denote rk,a and dk,a as the absolute

release time and absolute deadline of job Jk,a respectively. Relative deadline Dk is equal to

dk,a − rk,a. Since in this paper we address sporadic tasks, the absolute release time has the

following properties:

rk,a+1 ≥ dk,a

rk,a+1 − rk,a ≥ dk,a − rk,a = Dk

8

Chapter 4

Capacity Augmentation Bound of

4− 2
m for GEDF

In this chapter, we propose a capacity augmentation bound of 4 − 2
m

for implicit deadline

tasks, which yields an easy schedulability test. In particular, we show that GEDF can

successfully schedule a task set, if the task set satisfies two conditions: (1) its total utilization

is at most m/(4 − 2
m

) and (2) the critical-path length of each task is at most 1/(4 − 2
m

) of

its period (and deadline). Note that this is equivalent to saying that if a task set meets

conditions from Inequalities 3.1 and 3.2 on processors of unit speed, then it can be scheduled

on m cores of speed 4− 2
m

(which approaches 4 as m approaches infinity).

The gist of the proof is the following: at a job’s release time, we can bound the remaining

work from other tasks under GEDF with speedup 4 − 2
m

. Bounded remaining work leads

to bounded interference from other tasks, and hence GEDF can successfully schedule all of

them.

4.1 Notation

We first define a notion of interference. Consider a job Jk,a, which is the a-th instance of

task τk. Under GEDF scheduling, only jobs that have absolute deadlines earlier than the

absolute deadline of Jk,a can interfere with Jk,a. We say that a job is unfinished if the job

has been released but has not completed yet. Due to implicit deadlines (Di = Pi), at most

one job of each task can be unfinished at any time.

9

There are two sources of interference for job Jk,a. (1) Carry-in work is the work from

jobs that were released before Jk,a, did not finish before Jk,a was released, and have deadlines

before the deadline of Jk,a. Let Rk,a
i be the carry-in work due to task τi and let Rk,a =

∑
iR

k,a
i

be the total carry-in from the entire task set onto the job Jk,a. (2) Other than carry-in work,

the jobs that were released after (or at the same time as) Jk,a was released can also interfere

with it if their deadlines are either before or at the same time as Jk,a. Let nk,a
i be the number

of jobs of task τi, which are released after the release time of Jk,a but have deadlines no later

than the deadline of Jk,a (that is, the number of jobs from task τi that entirely fall in between

the release time and deadline of Jk,a, i.e. the time interval [rk,a, dk,a].) For example, in the

right hand side of Figure 4.1, one entire job J1,3 falls within time interval [r3,1, d3,1] of job

J3,1, so n3,1
1 = 1. By definition (and Di = Pi), every task i has the property that

nk,a
i Di ≤ Dk (4.1)

Figure 4.1: Example task set execution trace

Therefore, the total amount of work Ak,a, that can interfere with Jk,a (including Jk,a’s work)

and (to prevent any deadline misses) must be finished before the deadline of Jk,a is the sum

10

of the carry-in work and the work that was released at or after Jk,a’s release.

Ak,a = Rk,a +
∑
i

uin
k,a
i Di. (4.2)

Note that the work of the job Jk,a itself is also included in this formula. That is, in this

formulation, each job interferes with itself.

4.2 Proof for Capacity Augmentation Bound

Consider a GEDF schedule with m cores each of speed b. Each time step can be divided

into b sub-steps such that each core can do one unit of work in each sub-step. We say a

sub-step is complete if all cores are working during that sub-step, and otherwise we say it

is incomplete .

First, a couple of straight-forward lemmas.

Lemma 1 On every incomplete sub-step, the remaining critical-path length of each unfin-

ished job reduces by 1.

Lemma 2 In any t contiguous time steps (bt sub-steps) with unfinished jobs, if there are t∗

incomplete sub-steps, then the total work done during this time, Ft is at least

F t ≥ bmt− (m− 1)t∗.

Proof. The total number of complete sub-steps during t steps is bt− t∗, and the total work

during these complete steps is m(bt − t∗). On an incomplete sub-step, at least one unit of

work is done. Therefore, the total work done in incomplete sub-steps is at least t∗. Adding

the two gives us the bound.

We now prove a sufficient condition for the schedulability of a job.

11

Lemma 3 If interference Ak,a on a job Jk,a is bounded by

Ak,a ≤ bmDk − (m− 1)Dk,

then job Jk,a can meet its deadline on m identical cores with speed of b.

Proof. Note that there are Dk time steps (therefore bDk sub-steps) between the release

time and deadline of this job. There are two cases:

Case 1: The total number of incomplete sub-steps between the release time and deadline

of Jk,a is more than Dk, and therefore, also more than Lk. In this case, Jk,a’s critical-path

length reduces on all of these sub-steps. After at most Lk incomplete steps, the critical-path

is 0 and the job has finished executing. Therefore, it can not miss the deadline.

Case 2: The total number of incomplete sub-steps between the release and deadline of Jk,a

is smaller than Dk. Therefore, the total amount of work done during this time is more than

bmDk − (m − 1)Dk by the condition in Lemma 2. Since the total interference (including

Jk,a’s work) is at most this quantity, the job cannot miss its deadline.

We now define additional notation in order to prove that if the carry-in work for a job

is bounded, then GEDF guarantees a capacity augmentation bound of b. Let αk,a
i be the

number of time steps between the absolute release time of Jk,a and the absolute deadline of

the carry-in job of task i. Hence, for Jk,a and its carry-in job Jj,b of task j

αk,a
j = dj,b − rk,a (4.3)

To make the notation clearer, we give an example that is also illustrated in Figure 4.1. There

are 3 sporadic tasks with implicit deadlines: the (execution time, deadline, period) for tasks

τ1, τ2 and τ3 are (2, 3, 3), (7, 7, 7) and (6, 6, 6) respectively. For simplicity, assume they

are sequential tasks. Since tasks are sporadic, r1,2 > d1,1. α
3,1
1 is the number of time steps

between the release time of job J3,1 and the deadline of the carry-in job J1,2 from task 1. In

this example, α3,1
1 = 2. Similarly, α3,1

2 = 3. Also, n3,1
1 = 1.

12

For either periodic or sporadic tasks, task i has the property

αk,a
i + nk,a

i Di ≤ Dk (4.4)

Since αk,a
i is the remaining length of the carry-in job and nk,a

i is the number of jobs of

task τi entirely falling in the period (relative deadline) of job Jk,a, then as in Figure 4.1,

α3,1
1 + n3,1

1 D1 = 2 + 1 ∗ 3 = 5 < 6 = D3.

Lemma 4 If the cores’ speed is b ≥ 4− 2
m

and the total carry-in work Rk,a from every task

τi satisfies the condition

Rk,a ≤
∑
i

uiα
k,a
i +m ·max

i
(αk,a

i),

then job Jk,a always meets its deadline under global EDF.

Proof. The total amount of interfering work (including Jk,a’s work) is Ak,a = Rk,a +∑
i uin

k,a
i Di. Hence, according to the condition in Lemma 4, the total amount of work is:

Ak,a = Rk,a +
∑
i

uin
k,a
i Di

≤
∑
i

uiα
k,a
i +mmax

i
(αk,a

i) +
∑
i

uin
k,a
i Di

≤
∑
i

ui(α
k,a
i + nk,a

i Di) +mmax
i

(αk,a
i)

Using eq.(4.4) to substitute Dk into the formula, then

Ak,a ≤
∑
i

uiDk +mDk

13

Since the total task set utilization does not exceed the number of cores m, by eq.(3.2), we

replace
∑

i ui with m. And since b ≥ 4− 2
m

and m ≥ 1, we get

Ak,a ≤ 2mDk ≤ (3m− 1)Dk

≤ (4− 2

m
)mDk − (m− 1)Dk

≤ bmDk − (m− 1)Dk

Finally, according to Lemma 3, since the interference satisfies the bound, job Jk,a can meet

its deadline.

We now complete the proof by showing that the carry-in work is bounded as required by

Lemma 4 for every job.

Lemma 5 If the core’s speed b ≥ 4− 2
m

, then, for either periodic or sporadic task sets with

implicit deadlines, the total carry-in work Rk,a for every job Jk,a in the task set is bounded

by

Rk,a ≤
∑
i

uiα
k,a
i +mmax

i
(αk,a

i)

Proof. We prove this theorem by induction from absolute time 0 to the release time of job

Jk,a.

Base Case: For the very first job of all the tasks released in the system (denoted Jl,1), no

carry-in jobs are released before this job. Therefore, the condition trivially holds and the

job can meet its deadline by Lemma 4.

Rl,1 = 0 ≤
∑
i

uiα
l,1
i +mmax

i
(αl,1

i)

Inductive Step: Assume that for every job with an earlier release time than Jk,a, the

condition holds. Therefore, according to Lemma 4, every earlier released job meets its

deadline. Now we prove that the condition also holds for job Jk,a.

14

For job Jk,a, if there is no carry-in work from jobs released earlier than Jk,a, so that Rk,a = 0,

the property trivially holds. Otherwise, there is at least one unfinished job (a job with

carry-in work) at the release time of Jk,a.

We now define Jj,b as the job with the earliest release time among all the unfinished jobs

at the time that Jk,a was released. For example, at release time r3,1 of J3,1 in Figure 4.1,

both J1,2 and J2,1 are unfinished, but J2,1 has the earliest release time. By the inductive

assumption, the carry-in work Rj,b at the release time of job Jj,b is bounded by

Rj,b ≤
∑
i

uiα
j,b
i +mmax

i
(αj,b

i) (4.5)

Let t be the number of time steps between the release time rj,b of Jj,b and the release time

rk,a of Jk,a.

t = rk,a − rj,b

Note that Jj,b has not finished at time rk,a, but by assumption it can meet its deadline.

Therefore its absolute deadline dj,b is later than the release time rk,a. So, by eq.(4.3)

t+ αk,a
j = rk,a − rj,b + αk,a

j = dj,b − rj,b = Dj (4.6)

In Figure 4.1, t+ α3,1
1 = r3,1 − r2,1 + α3,1

1 = d2,1 − r2,1 = D2.

For each τi, let nt
i be the number of jobs that are released after the release time rj,b of Jj,b but

before the release time rk,a of Jk,a. The last such job may have a deadline after the release

time of rk,a, but its release time is before rk,a. In other words, nt
i is the number of jobs of

task τi, which fall entirely into the time interval [rj,b, rk,a +Di]. By definition of αk,a
i , to job

Jk,a, the deadline of the unfinished job of task τi is rk,a + αk,a
i . Therefore, for every τi,

αj,b
i + nt

iDi ≤ rk,a + αk,a
i − rj,b = t+ αk,a

i (4.7)

As in the example in Figure 4.1, one entire job of task τ1 falls within [r2,1, r3,1 +D1], making

nt
1 = 1 and d1,2 = r3,1 + α3,1

1 . Also, since d1,1 ≤ r1,2, α
2,1
1 + nt

1D1 = α2,1
1 +D1 ≤ d1,2 − r2,1 =

r3,1 + α3,1
1 − r2,1 = t+ α3,1

1 ≤ t+D1.

15

Comparing between t and αk,a
j , when t ≤ 1

2
Dj, by eq.(4.6), αk,a

j = Dj − t ≥ 1
2
Dj ≥ t. There

are two cases:

Case 1: t ≤ 1
2
Dj and hence αk,a

j ≥ t:

Since by definition Jj,b is the earliest carry-in job, other carry-in jobs to Jk,a are released

after the release time of Jj,b and therefore are not carry-in jobs to Jj,b. In other words, the

carry-in jobs to Jj,b must have been finished before the release time of Jk,a, which means

that the carry-in work Rj,b is not part of the carry-in work Rk,a. So the carry-in work Rk,a

is the sum of those released later than Jj,b

Rk,a =
∑
i

uin
t
iDi ≤

∑
i

ui(t+ αk,a
i) (from eq.(4.7))

By assumption of case 1, t ≤ αk,a
j ≤ maxi

(
αk,a
i

)
. Hence, replacing

∑
i ui with m using

eq.(3.2), we can prove that

Rk,a ≤
∑
i

uiα
k,a
i +mmax

i

(
αk,a
i

)

Case 2: t > 1
2
Dj:

Since Jj,b has not finished executing at the release time of Jk,a, the total number of incomplete

sub-steps during the t time steps (rj,b, rk,a] is less than Lj. Therefore, the total work done

during this time is at least F t where

F t = bmt− (m− 1)Lj (from Lemma 2)

≥ bmt− (m− 1)Dj (from eq.(3.1))

The total amount of work from jobs that are released in time interval (rj,b, rk,a] (i.e, entire

jobs that fall in between the release time of job Jj,b and the release time of job Jk,a plus its

deadline) is
∑

i uin
t
iDi, by the definition of nt

i. The carry-in work Rk,a at the release time of

job Jk,a is the sum of the carry-in work Rj,b and newly released work
∑

i uin
t
iDi minus the

16

finished work during time interval t, which is

Rk,a = Rj,b +
∑
i

uin
t
iDi − F t

≤ Rj,b +
∑
i

uin
t
iDi − (bmt− (m− 1)Dj) (4.8)

By the assumption in eq.(4.5), we can replace Rj,b and get

Rk,a ≤
∑
i

uiα
j,b
i +mmax

i

(
αj,b
i

)
+
∑

uin
t
iDi − bmt+ (m− 1)Dj

≤
∑
i

ui

(
αj,b
i + nt

iDi

)
+mmax

i

(
αj,b
i

)
−bmt+ (m− 1)Dj

According to eq.(4.7), we can replace αj,b
i + nt

iDi with t + αk,a
i , reorganize the formula, and

get

Rk,a ≤
∑
i

ui

(
t+ αk,a

i

)
+mmax

i
(αj,b

i)

−bmt+ (m− 1)Dj

≤

(∑
i

ui

(
t+ αk,a

i

)
−mt

)
+mmax

i
(αj,b

i) + (m− 1)Dj − (b− 1)mt

17

Using eq.(3.2) to replace m with
∑

i ui in the first item, using eq.(4.4) to get maxi (αj,b
i) ≤ Dj

and to replace maxi(α
j,b
i) with Dj in the second item, and since t > 1

2
Dj,

Rk,a

≤
∑
i

uiα
k,a
i +mDj + (m− 1)Dj − (b− 2)mt−mt

≤
∑
i

uiα
k,a
i +mDj −mt+ 2(m− 1)t− (b− 2)mt

≤
∑
i

uiα
k,a
i +m(Dj − t) + 0 (since b ≥ 4− 2

m
)

≤
∑
i

uiα
k,a
i +mαk,a

j (from eq.(4.6))

Finally, since αk,a
j ≤ maxi

(
αk,a
i

)
, we can prove that

Rk,a ≤
∑
i

uiα
k,a
i +mmax

i

(
αk,a
i

)

Hence, by induction, if the core speed b ≥ 4− 2
m

, for every Jk,a in task set

Rk,a ≤
∑
i

uiα
k,a
i +mmax

i

(
αk,a
i

)

From Lemmas 4 and 5, we can easily derive the following capacity augmentation bound

theorem.

Theorem 1 If, on unit speed cores, the utilization of a sporadic task set is at most m, and

the critical-path length of each job is at most its deadline, then the task set can meet all their

implicit deadlines on m cores of speed 4− 2
m

.

Theorem 1 proves the speedup factor of GEDF and it also can be restated as follows:

18

Corollary 1 Given that a sporadic task set τ with implicit deadlines satisfies the following

conditions: (1) total utilization is at most 1/(4− 2
m

) of the total system capacity m and (2)

the critical path Li of every task τi ∈ τ is at most Di/(4− 2
m

), then GEDF can schedule this

task set τ on m cores.

19

Chapter 5

Fixed Point Schedulability Test

In Chapter 4, we described a capacity augmentation bound for the GEDF scheduler, which

acts as a simple linear time schedulability test. In this chapter, we describe a tighter fixed

point schedulability test for parallel task sets under a GEDF scheduler. We start with a

schedulability test similar to one for sequential tasks. Then, we improve the calculation of

the carry-in work — this improvement is based on some of the equations used in the proof for

our capacity augmentation bound. Finally, we further improve the interference calculation

by considering the calculated finish time and altogether derive the fixed point schedulability

test.

5.1 Basic Schedulability Test

Given a task set, we denote R̂k
i as an upper bound on the carry-in work from task τi to a job

of task τk, and R̂k =
∑

i R̂
k
i as an upper bound on the total carry-in work from the entire

task set to a job of task τk. We also denote Âk
i and Âk as the corresponding upper bounds

on individual and total interference to task τk. In addition, n̂k
i is an upper bound on the

number of task τi’s interfering jobs, which are not part of the carry-in jobs, but interfere

with task τk. Finally, we use f̂k to denote an upper bound on the relative completion time

of task τk. If f̂k ≤ Dk, then task τk is schedulable, and otherwise it is not.

Then from equation 4.2, we can derive

Âk
i ≤ R̂k

i + uin̂k
iDi = R̂k

i + n̂k
iCi (5.1)

20

Âk =
∑
i

Âk
i ≤

∑
i

(
R̂k

i + n̂k
iCi

)
= R̂k +

∑
i

(
n̂k
iCi

)
(5.2)

From Lemma 2, we can easily derive that on a unit-speed system with m cores, the maximum

completion time of task τk is

f̂k ≤
1

m

(
Âk + (m− 1)Lk

)
(5.3)

This is simply because the maximum number of incomplete steps before the completion of

task τk is its critical-path length Lk and the maximum total available work (having deadlines

no later than the completion time) is the maximum total interference Âk. Note that the

execution time of task τk is incorporated in the calculation of total interference, which we

will show below.

Consider a job Jk,a of task τk, which finishes at its absolute deadline dk,a. Note that, in order

to achieve the maximum interference in order to calculate the upper bound on Âk
i , the last

job of task τi which interferes with Jk,a should have the same absolute deadline as Jk,a, that

is, dk,a. Hence, in the worst case, the upper bound on the number of interfering jobs that

begin after Jk,a is released (that is, they are not carry-in jobs) is

n̂k
i =

⌊
Dk

Di

⌋
(5.4)

Note that the execution time of task τk itself is considered as part of its interference as well,

i.e. n̂k
k = 1.

Obviously there could at most be one carry-in job of task τi to the job Jk,a of task τk.

Moreover, if in the worst-case of Âk
i , this job has already finished before the release time

of Jk,a, then R̂k
i = 0. By the definition of carry-in jobs and Equation (5.4) for n̂k

i , we can

see that the length between the deadline of carry-in job and the release time of job Jk,a is

Dk − n̂k
iDi. If the carry-in job has not finished when job Jk,a is released, then Dk − n̂k

iDi

has to be longer than Dk − f̂i, where f̂i is the upper bound of task τi’s completion time.

21

We denote Xk
i below as the upper bound for the maximum carry-in work

Xk
i =

Ci

(
Dk − n̂k

iDi > Di − f̂i
)

0
(
Dk − n̂k

iDi ≤ Di − f̂i
) =

⌈
Dk − n̂k

iDi

Di − f̂i
− 1

⌉
Ci

Then obviously, the upper bound of total carry-in work to task τk is

R̂k =
∑
i

R̂k
i ≤

∑
i

Xk
i (5.5)

Combining the above calculations together, we can derive the basic fixed point calculation

of the maximum completion time of task τk:

f̂k ≤
1

m

(
R̂k +

∑
i

(
n̂k
iCi

)
+ (m− 1)Lk

)
(5.6)

≤ 1

m

(∑
i

((⌈
Dk − n̂k

iDi

Di − f̂i
− 1

⌉
+

⌊
Dk

Di

⌋)
Ci

)
+ (m− 1)Lk

)
(5.7)

The fixed point schedulability test works as follows: in the beginning, we set the completion

time f̂k of each task to be the same as its relative deadline Dk; then we iteratively use

Equation (5.7) to calculate a new value of completion time f̂k
′
for all τk; we only update f̂k if

the calculated new value is less than Dk; finally, the calculation will stop if there is no more

update for all f̂k. In the end, we use Equation (5.7) again to calculate the final upper bound

of completion time f̂k
′′
: if for all tasks f̂k

′′
≤ Dk, then the task set is deemed schedulable;

otherwise, not.

Obviously, before the last step of calculating f̂k
′′
, in each iteration, f̂k will not be larger

than Dk. After the first iteration, each f̂k will either stays at Dk or decrease (because f̂k
′

is less than Dk). More importantly, f̂k will decrease or stay the same when at least one f̂i

of another task τi decreases. In conclusion, f̂k will not increase in each iteration. Therefore,

the fixed point calculation will converge.

22

Note that there is a subtlety about this calculation. Because of the assumption f̂i ≤ Di

of Equation (5.4), Equation (5.7) is only correct when the finish time of each task in the

task set is no more than its relative deadline. This is the reason why in the fixed point

calculation, we do not update f̂k if the calculated new value f̂k
′

is larger than Dk. After

the last step (calculating f̂k
′′
) of the fixed point calculation, if the task set is schedulable,

i.e. the assumption is satisfied, we actually did correctly calculate an upper bound on the

interference and therefore an upper bound on the completion time. Therefore, if this test

says that a task set is schedulable, it is indeed schedulable. If the test says that the task

set is unschedulable, then the test may be underestimating the interference. In this case,

however, this inaccuracy it does not matter, since even the underestimation makes the task

set unschedulable, so even the correct estimation will also deem the task set unschedulable.

5.2 Improving the Carry-In Work Calculation

In the basic test, we calculate the carry-in work using Equation (5.5). However, this upper

bound calculation Xk
i may be pessimistic, if task τk has a very short period, while task τi

has a very long period. This is because if the carry-in job of τi to τk has not finished before

τk is released, then the entire Ci will be counted as interference. However, GEDF, as a

greedy algorithm, might have already executed most of the computation of the carry-in job.

Inspired by the proof of the capacity augmentation bound for GEDF, we propose another

upper bound for R̂k.

Note that in the proof of Lemma 5, there are the two cases. The calculation of Xk =
∑

iX
k
i

in the basic test is similar to Case 1, but without knowing the first carry-in job. Therefore,

from Case 2, we can also obtain another upper bound Y k for R̂k without knowing the first

carry-in job. After getting the two upper bounds of R̂k, we can simply take the minimum

of Xk and Y k and achieve a schedulability test.

For R̂k, if there is no unfinished carry-in job, then R̂k = 0 for job Jk,a. Otherwise, say Jj,b

is the carry-in job with the earliest release time among all the unfinished jobs at the release

23

time of Jk,a. From Inequality (4.8), on m unit-speed cores,

Rk,a ≤ Rj,b +
∑
i

nt
iCi + (m− 1)Lj −mt

where t is the interval between the release time rj,b of Jj,b and the release time rk,a of Jk,a

and nt
i is the number of jobs of task τi that are released during this time.

In the worst case for Ak (where every last interfering job of each τi has the same deadline as

Jk,a’s deadline), from Equation (5.4), we can calculate t:

t = Dj + n̂k
jDj −Dk

nt
i ≤

⌈
t

Di

⌉
=

⌈
Dj + n̂k

jDj −Dk

Di

⌉

Therefore, if task τj is indeed the task having the first carry-in job, then the maximum of

the carry-in work R̂k of task τk can be bounded by Y k
j where

Y k
j ≤ Y j +

∑
i

(⌈
Dj + n̂k

jDj −Dk

Di

⌉
Ci

)
+(m− 1)Lj −m(Dj + n̂k

jDj −Dk) (5.8)

Note that the bound Y k
j is an upper bound on R̂k only if task τj is indeed the task whose

job Jj,b is the unfinished carry-in job with the earliest release time. However, we do not

know which task is actually task τj — in fact, it can be different for each job Jk,a of task τk.

Therefore, we take the maximum of Y k
j for all the tasks τj in the task set. Therefore, without

knowing task τj, we can bound the maximum total carry-in work R̂k by overestimating Y k:

R̂k ≤ Y k ≤ max
j
Y k
j (5.9)

24

Both Y k from Inequality (5.9) and
∑

iX
k
i from Inequality (5.5) can be used to bound the

carry-in work R̂k. Hence, we can improve the basic test by using

R̂k ≤ min
(
Xk, Y k

)
≤ min

(∑
i

Xk
i ,max

j
Y k
j

)
(5.10)

for the calculation of completion time in Formula (5.6).

5.3 Improving the Calculation for Completion Time

Finally, note that in Formula (5.6), we calculate the maximum number of interfering but

not carry-in jobs using Equation (5.4), in which we assume that the completion time of task

τk is exactly Dk. However, if task τk actually finishes earlier than its deadline, it may suffer

from less interference. Such a calculation is no different than for a sequential task set on a

single core, so we can similarly derive the improved calculation of n̂k
i using

n̂k
i = min

(⌊
Dk

Di

⌋
,

⌊
Dk − fk
Di

+ 1

⌋)
(5.11)

We can then use this new calculation for n̂k
i in our calculation of interference, leading to a

potentially tighter interference calculation.

25

Chapter 6

Resource Augmentation Bound of

2− 1
m for GEDF

In this chapter, we prove the resource augmentation bound of 2 − 1
m

for GEDF scheduling

of arbitrary deadline tasks.

For sake of discussion, we convert the DAG representing a task into an equivalent DAG

where each sub-node does 1
m

unit of work. An example of this transformation of Task τ1

in Figure 3.1 is shown in job W1 in Figure 6.1 (see the upper job). A node with work w is

split into a chain of mw sub-nodes with work 1
m

. For example, since in Figure 6.1 m = 2,

node W 1
1 with worst-case execution time of 1 is split into 2 sub-nodes W 1,1

1 and W 1,2
1 each

with length 1
2
. The original incoming edges come into the first node of the chain, while the

outgoing edges leave the last node of the chain. This transformation does not change any

other characteristic of the DAG, and the scheduling does not depend on this step — the

transformation is done only for clarity of the proof.

6.1 Proof for Resource Augmentation Bound

First, some definitions. Since the GEDF scheduler runs on cores of speed 2 − 1
m

, each step

under GEDF can be divided into (2m−1) sub-steps of length 1
m

. In each sub-step, each core

can do 1
m

units of work (i.e. execute one sub-node). In a GEDF scheduler, on an incomplete

step, all ready nodes are executed (Observation 1). As in Chapter 4, we say that a sub-step

is complete if all cores are busy, and incomplete otherwise. For each sub-step t, we define

26

FI(t) as the set of sub-nodes that have finished executing under an ideal scheduler after

sub-step t, RI(t) as the set of sub-nodes that are ready (all their predecessors have been

executed) to be executed by the ideal scheduler before sub-step t, and DI(t) as the set of

sub-nodes completed by the ideal scheduler in sub-step t. Note that DI(t) = RI(t) ∩FI(t).
We similarly define FG(t), RG(t), and DG(t) for GEDF scheduler.

Observation 1 The GEDF scheduler completes all the ready nodes in an incomplete sub-

step. That is,

DG(t) = RG(t), if t is incomplete sub-step, (6.1)

Note for the ideal scheduler, each original step consists of m sub-steps, while for GEDF with

speed 2− 1
m

each step consists of 2m− 1 sub-steps. For example, in Figure 6.1 for step t1,

there are two sub-steps t1(1) and t1(2) under ideal scheduler, while under GEDF there is an

additional t1(3) (since 2m− 1 = 3).

Theorem 2 If an ideal scheduler can schedule a task set τ (periodic or sporadic tasks with

arbitrary deadlines) on a unit-speed system with m identical cores, then global EDF can

schedule τ on m cores of speed 2− 1
m

.

Proof. In a GEDF scheduler, on an incomplete sub-step, all ready sub-nodes are executed

(Observation 1). Therefore, after an incomplete sub-step, GEDF must have finished all the

released sub-nodes and hence must have done at least as much work as the ideal scheduler.

Thus, for brevity of our proof, we leave out any time interval when all cores under GEDF are

idling, since at this time GEDF has finished all available work and at this time the Theorem

is obviously true. We define time 0 as the first instant when not all cores are idling under

GEDF and time t as any time such that for every sub-step during time interval [0, t] at least

one core under GEDF is working. Therefore for every incomplete sub-step GEDF will finish

at least 1 sub-node (i.e. 1
m

unit of work). We also define sub-step 0 as the last sub-step

before time 0 and hence by definition,

FG(0) ⊇ FI(0) and |FG(0)| ≥ |FI(0)| (6.2)

27

For each time t ≥ 0, we now prove the following: If the ideal unit-speed system can success-

fully schedule all tasks with deadlines in the time interval [0, t], then on speed 2− 1
m

cores,

so can GEDF. Note again that during the interval [0, t] an ideal scheduler and GEDF have

tm and 2tm− t sub-steps respectively.

Case 1: In [0, t], GEDF has at most tm incomplete sub-steps.

Since there are at least (2tm − t) − tm = tm − t complete steps, the system can complete

|FG(t)| − |FG(0)| ≥ m(tm − t) + (tm) = tm2 work, since each complete sub-step can finish

executing m sub-nodes and each incomplete sub-step can finish executing at least 1 sub-

node. We define I(t) as the set of all sub-nodes from jobs with absolute deadlines no

later than t. Since the ideal scheduler can schedule this task set, we know that |I(t)| −
|FI(0)| ≤ mt ∗m = tm2, since the ideal scheduler can only finish at most m sub-nodes in

each sub-step and during [0, t] there are mt sub-steps for the ideal scheduler. Hence, we have

|FG(t)| − |FG(0)| ≥ |I(t)| − |FI(0)|. By eq.(6.2), we get |FG(t)| ≥ |I(t)|. Note that jobs in

I(t) have earlier deadlines than the other jobs, so under GEDF, no other jobs can interfere

with them. The GEDF scheduler will never execute other sub-nodes unless there are no

ready sub-nodes from I(t). Since |FG(t)| ≥ |I(t)|, i.e. GEDF has finished at least as many

sub-nodes as the number in I(t), this implies that GEDF must have finished all sub-nodes

in I(t). Therefore, GEDF can meet all deadlines since it has finished all work that needed

to be done by time t.

Case 2: In [0, t], GEDF has more than tm incomplete sub-steps.

For each integer s we define f(s) as the first time instant such that the number of incomplete

sub-steps in interval [0, f(s)] is exactly s. Note that the sub-step f(s) is always incomplete,

since otherwise it wouldn’t be the first such instant. We show, via induction, that FI(s) ⊆
FG(f(s)). In other words, after f(s) sub-steps, GEDF has completed all the nodes that the

ideal scheduler has completed after s sub-steps.

Base Case: For s = 0, f(s) = 0. By eq.(6.2), the claim is vacuously true.

Inductive Step: Suppose that for s− 1 the claim FI(s− 1) ⊆ FG(f(s− 1)) is true. Now,

we prove that FI(s) ⊆ FG(f(s)).

28

In (s− 1, s], the ideal system has exactly 1 sub-step. So,

FI(s) = FI(s− 1) ∪ DI(s) ⊆ FI(s− 1) ∪RI(s) (6.3)

Since FI(s − 1) ⊆ FG(f(s − 1)), all the sub-nodes that are ready before sub-step s for

the ideal scheduler, will either have already been executed or are also ready for the GEDF

scheduler one sub-step after sub-step f(s− 1); that is,

FI(s− 1) ∪RI(s) ⊆ FG(f(s− 1)) ∪RG(f(s− 1) + 1) (6.4)

For GEDF, from sub-step f(s−1)+1 to f(s), all the ready sub-nodes with earliest deadlines

will be executed and then new sub-nodes will be released into the ready set. Hence,

FG(f(s− 1)) ∪RG(f(s− 1) + 1)

⊆ FG(f(s− 1) + 1) ∪RG(f(s− 1) + 2) (6.5)

⊆ ... ⊆ FG(f(s)− 1) ∪RG(f(s))

Since sub-step f(s) for GEDF is always incomplete,

FG(f(s))

= FG(f(s)− 1) ∪ DG(f(s))

= FG(f(s)− 1) ∪RG(f(s)) (from eq.(6.1))

⊇ FG(f(s− 1)) ∪RG(f(s− 1) + 1) (from eq.(6.5))

⊇ FI(s− 1) ∪RI(s) (from eq.(6.4))

⊇ FI(s) (from eq.(6.3))

By time t, there are mt sub-steps for the ideal scheduler, so GEDF must have finished all

the nodes executed by the ideal scheduler at sub-step f(mt). Since there are exactly mt

incomplete sub-steps in [0, f(mt)] and since the number of incomplete sub-steps by time t

is at least mt, the time f(mt) is no later than time t. Since the ideal system does not miss

any deadline by time t, GEDF also meets all deadlines.

29

6.2 An Example Providing an Intuition for the Proof

We provide an example in Figure 6.1 to illustrate the proof of Case 2 and compare the

execution trace of an ideal scheduler (this scheduler is only considered “ideal” in the sense

that it makes all the deadlines) and GEDF. In addition to task 1 from Figure 3.1, Task τ2

consists of two nodes connected to another node, all with execution time of 1 (each split

into 2 sub-nodes in the figure). All tasks are released by time t0. The system has 2 cores,

so GEDF has a resource augmentation bound of 1.5. Figure 6.1(a) is the execution for the

ideal scheduler on unit-speed cores, while Figure 6.1(b) shows the execution under GEDF

on speed 2 cores. One step is divided into 2 and 3 sub-steps, representing the speedup of 1

and 1.5 for the ideal scheduler and GEDF respectively.

Since the critical-path length of Task τ1 is equal to its deadline, intuitively it should be

executed immediately even though it has the latest deadline. That is exactly what the ideal

scheduler does. However, GEDF (which does not take critical-path length into consideration)

will prioritize Task τ2 first. If GEDF is only on a unit-speed system,Task τ1 will miss deadline.

However, when GEDF gets speed-1.5 cores, all jobs are finished in time. To illustrate Case

2 of the above theorem, consider s = 2. Since t2(3) is the second incomplete sub-step under

GEDF, f(s) = 2(3). All the nodes finished by the ideal scheduler after second sub-step

(shown above in dark grey) have also been finished under GEDF by step t2(3) (shown below

in dark grey).

30

W1
1,2	

W1
2,2	

W1
3,1	

C1
1 = 1

C1
2 = 1

W1
1,1	

W1
2,1	

t2(2)
 t3(1)

 t3(2)
 t4(1)

 t4(2)

W1
3,2	
 W1

3,3	
 W1
3,4	
 W1

3,5	
 W1
3,6	

W1
4,1	

W1
4,2	

W1
4,3	

W1
4,4	

W1
5,1	

W1
5,2	

C1
3 = 3

C1
5 = 1

C1
4 = 2

C1 = 8
D1 = 6

u1 = C1/D1 = 4/3

t1(1)
 t1(2)

t1(1)
 t1(2)

t2(1)

t5(1)

t5(2)

t5(1)

t5(2)

t6(1)

t6(2)

W2
1,2	

W2
2,2	

W2
3,1	

C2
1 = 1

C2
2 = 1

C2
3 = 1 W2

1,1	

W2
2,1	

W2
3,2	
 t2(1)

 t2(2)

t3(1)
 t3(2)

t4(1)
 t4(2)

C2 = 3
D2 = 5

u2 = C2/D2 = 3/5

1st & 2nd sub-step
finished sub-nodes

(a) Scheduled under unit-speed ideal scheduler.

W2
1,2	

W2
2,2	

W2
3,1	

C2
1 = 1

C2
2 = 1

C2
3 = 1 W2

1,1	

W2
2,1	

W2
3,2	

W1
1,2	

W1
2,2	

W1
3,1	

C1
1 = 1

C1
2 = 1

W1
1,1	

W1
2,1	

t3(2)
 t3(3)

 t4(1)
 t4(2)

 t4(3)

W1
3,2	
 W1

3,3	
 W1
3,4	
 W1

3,5	
 W1
3,6	

W1
4,1	

W1
4,2	

W1
4,3	

W1
4,4	

W1
5,1	

W1
5,2	

C1
3 = 3

C1
5 = 1

C1
4 = 2

t7（1） if on speed-1
Not finish at time 7

Miss deadline

t1(3)
 t2(1)

t2(2)
 t2(3)

t1(1)
 t1(2)

t1(1)
 t1(2)

t1(3)
 t2(1)

t3(1)

t5(1)

t5(2)

t5(1)

t5(2)

t5(3)

t6(1)
 Meet deadline

if on speed-1.5

1st & 2nd incomplete
sub-step

(b) Scheduled under 2-speed GEDF scheduler.

Figure 6.1: Examples of task set execution on 2 cores.

31

Chapter 7

Lower Bound on Capacity

Augmentation Bound of GEDF

While the above proof guarantees a bound, since the ideal scheduler is not known, given a

task set, we cannot tell if it is feasible on speed-1 cores. Therefore, we cannot tell if it is

schedulable by GEDF on cores with speed 2− 1
m

.

One standard way to prove resource augmentation bounds is to use lower bounds on the

ideal scheduler, such as Inequalities 3.1 and 3.2. As previously stated, we call the resource

augmentation bound proven using these lower bounds a capacity augmentation bound

in order to distinguish it from the augmentation bound described above. To prove a capacity

augmentation bound of b under GEDF, one must prove that if Inequalities 3.1 and 3.2 hold

for a task set on m unit-speed cores, then GEDF can schedule that task set on m cores of

speed b. Hence, the capacity augmentation bound is also an easy schedulability test.

First, we demonstrate a counter-example to show proving a capacity augmentation bound

of 2 for GEDF is impossible.

In particular, in Figure 7.1 we show a task set that satisfies inequalities 3.1 and 3.2, but

cannot be scheduled on m cores of speed 2 by GEDF. In this example, m = 6 as shown in

Figure 7.2. The task set has two tasks. All values are measured on a unit-speed system,

shown in Figure 7.1. Task τ1 has 13 nodes with total execution time of 440 and period

of 88, so its utilization is 5. Task τ2 is a single node, with execution time and implicit

deadline both 60 and hence utilization of 1. Note the total utilization (6) is exactly equal

32

Figure 7.1: Structure of the task set that demonstrates GEDF does not provide a
capacity augmentation bound less than (3 +

√
5)/2

to m, satisfying inequality 3.2. The critical-path length of each task is equal to its deadline,

satisfying inequality 3.1.

The execution trace of the task set on a 2-speed 6-core core under GEDF is shown in Figure

7.2. The first task is released at time 0 and is immediately executed by GEDF. Since the

system under GEDF is at speed 2, W 1,1
1 finishes executing at time 28. GEDF then executes

6 out of the 12 parallel nodes from Task τ1. At time 29, task τ2 is released. However, its

deadline is r2 + D2 = 29 + 60 = 89, which is later than deadline 88 of task τ1. Nodes from

task τ1 are not preempted by task τ2 and continue to execute until all of them finish their

work at time 60. Task τ1 successfully meets its deadline. The GEDF scheduler finally gets

to execute task τ2 and finishes it at time 90, so task τ2 just fails to meet its deadline of

89. Note that this is not a counter-example for the resource augmentation bound shown in

Theorem 2, since no scheduler can schedule this task set on unit-speed system either.

Second, we demonstrate that one can construct task sets that require capacity augmentation

of at least 3+
√
5

2
to be schedulable by GEDF. We generate task sets with two tasks whose

33

Figure 7.2: Execution of the task set under GEDF at speed 2

structure depends on m, speedup factor b and a parallelism factor n, and show that for large

enough m and n, the capacity augmentation required is at least b ≥ 3+
√
5

2
. As in the lower

part of Figure 7.1, task τ1 is structured as a single node with work x followed by nm nodes

with work y. Its critical-path length is x + y and so is its deadline. The utilization of task

τ1 is set to be m− 1, hence

m− 1 =
x+ nmy

x+ y
(7.1)

Task τ2 is structured as a single node with work and deadline equal to x + y − x
b

(hence

utilization 1). Therefore, the total task utilization is m and Inequalities 3.1 and 3.2 are met.

As the lower part of Figure 7.2 shows, Task τ2 is released at time x
b

+ 1.

34

We want to generate a counter example, so we want task τ2 to barely miss the deadline by

1 sub-step. In order for this to occur, we must have

(x+ y − x

b
) + 2 =

ny

b
+

1

b
(x+ y − x

b
). (7.2)

Reorganizing and combining eq.(7.1) and eq.(7.2), we get

(m− 2)b2 = ((3bn− b− n− b2n+ 1)m+ (b2 − 2bn− 1))y (7.3)

In the above equation, for large enough m and n, we have (3bn− b− n− b2n+ 1) > 0, or

1 < b <
3

2
− 1

2n
+

1

2

√
5− 2

n
+

1

n2
(7.4)

So, there exists a counter-example for any speedup b which satisfies the above conditions.

Therefore, the capacity augmentation required by GEDF is at least 3+
√
5

2
. The example

above with speedup of 2 comes from such a construction. Another example with speedup

2.5 can be obtained when x = 36050, y = 5900, m = 120 and n = 7.

35

Chapter 8

Simulation Evaluation

In this chapter, we present results of our simulation results of the performance of GEDF and

the robustness of our capacity augmentation bound.1 We randomly generate task sets that

fully load machines, and then simulate their execution on machines of increasing speed. The

capacity augmentation bound for GEDF predicts that all task sets should be schedulable

by the time the core speed is increased to 4 − 2
m

. In our simulations, all task sets became

schedulable before the speed reached 2.

We also compared GEDF with the another method that provides capacity bounds for schedul-

ing multiple DAGs (with a DAG’s utilization potentially more than 1) on multicores [63]. In

this method, which we call DECOMP , tasks are decomposed into sequential subtasks and

then scheduled using GEDF.2 We find that GEDF without decomposition performs better

than DECOMP for most task sets.

8.1 Task Sets and Experimental Setup

We generate two types of DAG tasks for evaluation. For each method, we first fix the number

of nodes n in the DAG and then add edges.

(1) Erdos-Renyi method G(n, p) [21]: For a DAG with n nodes, there are n2/2 possible

valid edges. We go through each valid edge and add it with probability p, where p is a

1Note that, due to the lack of a schedulability test, it is difficult to experimentally test the resource
augmentation bound of 2− 1/m or through simulation.

2For DECOMP, end-to-end deadline (instead of decomposed subtask’s deadline) miss ratios were reported.

36

parameter (i.e. DAGs with e valid edges will have ep edges in average). Note that this

method does not necessarily generate a connected DAG. Although the bound also does not

require the DAG of a task to be fully connected, connecting more of its nodes can make it

harder to schedule. Hence, we modified the algorithm slightly in the last step, to add the

fewest edges needed to make the DAG connected.

(2) Special synchronous task L(n,m): As shown in Figure 7.1, synchronous tasks like

it, in which highly parallel segments follow sequential segments, makes scheduling difficult

for GEDF since they can cause deadline misses for other tasks. Therefore, we generate task

sets with alternating sequential and highly parallel segments. Tasks in L(n,m) (m is the

number of processors) are generated in the following way. While the total number of nodes

in the DAG is smaller than n, we add another sequential segment by adding a node, then

generate the next parallel layer randomly. For each parallel layer, we uniformly generate a

number t between 1 and b n
m
c, and set the number of nodes in the segment to be t ∗m.

Given a task structure generated by either of the above methods, worst-case execution times

for individual nodes in the DAG are picked randomly between [50, 500]. The critical-path

length Li for each task is then calculated. After that, we assign a period (equal to its

deadline) to each task. Note that a valid deadline is at least the critical-path length. Two

types of periods were assigned to tasks.

(1) Harmonic Period: All tasks have periods that are integral powers of 2. We first

compute the smallest value a such that 2a is larger than a task’s critical-path length Li.

We then randomly assign the period either 2a, 2a+1 or 2a+2 to generate tasks with varying

utilization. All tasks are then released at the same time and simulated for the hyper-period

of the tasks.

(2) Arbitrary Period: An arbitrary period is assigned in the form (Li + Ci

0.5m
) ∗ (1 + 0.25 ∗

gamma(2, 1)), where gamma(2, 1) is the Gamma distribution with k = 2 and θ = 1. The

formula is designed such that, for small m, tasks tend to have smaller utilization. This allows

us to have a reasonable number of tasks in a task set for any value of m.

Several parameters were varied to test the system: G(n, p) vs L(n,m) DAGs, different p for

G(n, p), harmonic vs arbitrary Periods, numbers of Core m (4, 8, 16, 32, 64). Task sets are

created by adding tasks to them until the total utilization reaches 99% of m. Each task set

37

is simulated for 20 times the longest period in a task set. For each setting, we generated

1000 task sets. We first simulated the task sets for each setting on cores of speed 1, and

increased the speed in steps of 0.2. For each setting, we measured the failure ratio — the

number of task sets where any task missed its deadline over the number of total simulated

task sets. We stopped increasing the speed for a task set when no deadline was missed.

8.2 Simulation Results

We first present the results for task sets generated by the Erdos-Renyi method for various

setting of p and different numbers of processors to see the effect of these parameters on the

performance of GEDF.

8.2.1 Erdos-Renyi Method

For this method, we generate two types of task sets: (1) Fixed p task sets: In this setting,

all task sets have the same p. We varied the values of p over {0.01, 0.02, 0.03, 0.05, 0.07,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9}. (2) Random p task sets: We also generated

task sets where each task has a different, randomly picked, value of p.

Figures 8.1(a), 8.1(b) and 8.1(c) show the failure rate for fixed-p task sets as we varied p

and kept m constant at 64. GEDF without decomposition outperforms DECOMP for all

settings of p. It appears that GEDF has the hardest time when p ≤ 0.1, where tasks are

more sequential. But even then, all tasks are schedulable with speed 1.8. At p > 0.1, GEDF

never requires speed more than 1.4, while DECOMP often requires a speed of 2 to schedule

all task sets. We can also see that different task sets with different p values affect GEDF

less than DECOMP. Trends are similar for other values of m.

Figures 8.1(d), 8.1(e) and 8.1(f) show the failure rate for fixed-p task sets as we varied p and

kept m constant at 16. GEDF without decomposition still outperforms DECOMP for almost

all cases. Comparing the results between 64-core and 16-core task sets with same p, we can

see that DECOMP improves greatly, while GEDF only improves slightly. This is mostly

38

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

DECOMP, p = 0.01
GEDF, p = 0.01
DECOMP, p = 0.03
GEDF, p = 0.03
DECOMP, p = 0.07
GEDF, p = 0.07

2 1.8 1.6 1.4 1.2 1

Speedup

(a) For p = (0.01, 0.03, 0.07) and m = 64.

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

DECOMP, p = 0.2
GEDF, p = 0.2
DECOMP, p = 0.4
GEDF, p = 0.4
DECOMP, p = 0.6
GEDF, p = 0.6

2 1.8 1.6 1.4 1.2 1

Speedup

(b) For p = (0.2, 0.4, 0.6) and m = 64.

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

DECOMP, p = 0.7
GEDF, p = 0.7
DECOMP, p = 0.8
GEDF, p = 0.8
DECOMP, p = 0.9
GEDF, p = 0.9

2 1.8 1.6 1.4 1.2 1

Speedup

(c) For p = (0.7, 0.8, 0.9) and m = 64.

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

DECOMP, p = 0.01
GEDF, p = 0.01
DECOMP, p = 0.03
GEDF, p = 0.03
DECOMP, p = 0.07
GEDF, p = 0.07

2 1.8 1.6 1.4 1.2 1

Speedup

(d) For p = (0.01, 0.03, 0.07) and m = 16.

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

DECOMP, p = 0.2
GEDF, p = 0.2
DECOMP, p = 0.4
GEDF, p = 0.4
DECOMP, p = 0.6
GEDF, p = 0.6

2 1.8 1.6 1.4 1.2 1

Speedup

(e) For p = (0.2, 0.4, 0.6) and m = 16.

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

D, p = 0.7
G, p = 0.7
D, p = 0.8
G, p = 0.8
D, p = 0.9
G, p = 0.9

2 1.8 1.6 1.4 1.2 1

Speedup

(f) For p = (0.7, 0.8, 0.9) and m = 16.

Figure 8.1: Failure ratio of GEDF (solid line) vs. DECOMP (dashed line) for G(n, p)
tasks with different task set utilization percentages (speedups). The left three figures
show the results for 64-core, and right three for 16-core. From top down, figures show
results with small, medium and large values of p respectively.

39

because for GEDF, most task sets are schedulable at the speedup of 1.4. This required

speedup might have approached to the limit, so there is no more space for improvement.

0.2 0.4 0.6 0.8
1

1.2

1.4

1.6

1.8

2

m (number of cores)

M
in

im
u

m
 S

ch
ed

u
la

b
le

 S
p

ee
d

u
p

DECOMP, m=32
GEDF, m=32
DECOMP, m=4
GEDF, m=4

(a) Minimum schedulable speedup as p changes for
different m = (32, 8).

10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2

m (number of cores)
M

in
im

u
m

 S
ch

ed
u

la
b

le
 S

p
ee

d
u

p

DECOMP, p=0.02
GEDF, p=0.02
DECOMP, p=0.5
GEDF, p=0.5

(b) Minimum schedulable speedup as m changes for
different p = (0.02, 0.5).

Figure 8.2: The left figure shows the effect of varying p on the speedup required to
make all task sets schedulable.The right figure shows the effect of varying m on the
speedup required to make all task sets schedulable. (harmonic period)

In Figure 8.1, we show detailed results for 64 and 16-core simulation results. The results

for 32, 8 and 4-core have a similar trend: GEDF performs better than DECOMP; generally

both schedulers perform better with lower cores. Figure 8.2 shows the minimum speedup at

which all task sets are schedulable. In particular, in Figure 8.2(a) we can see that with fewer

cores, both schedulers generally require the same or less speedup to schedule all 1000 task

sets. The trend with different p is less obvious. It seems task sets with more near-sequential

tasks (low p) are harder to schedule in general. However, highly connected DAGs (high p)

are hard only for DECOMP to schedule, but not for GEDF. This is may because those DAGs

make DECOMP harder to generate good decomposition results. For p = 0.02 and p = 0.5,

in Figure 8.2(b) we vary m. Results for other p and m are similar. This figure also indicates

that GEDF without decomposition generally needs less speedup to schedule the same task

sets. Again, increasing m increases the speedup required in most cases.

We now see the effect of m. In order to keep the figures from getting too cluttered, from now

on, we only show results with m = 4, 16 and 64. The trends for m = 8 and 32 are similar

and their curves usually lie in between 4 and 64. Figure 8.3(a) shows the failure ratio of the

40

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

DECOMP, m = 4
GEDF, m = 4
DECOMP, m = 16
GEDF, m = 16
DECOMP, m = 64
GEDF, m = 64

2 1.8 1.6 1.4 1.2 1

Speedup

(a) Comparison as m changes (G(n, p) tasks, p =
0.02, harmonic period).

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

DECOMP, m = 4
GEDF, m = 4
DECOMP, m = 16
GEDF, m = 16
DECOMP, m = 64
GEDF, m = 64

2 1.8 1.6 1.4 1.2 1

Speedup

(b) Comparison as m changes (G(n, p) tasks, p =
0.02, arbitrary period).

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

DECOMP, m = 4
GEDF, m = 4
DECOMP, m = 16
GEDF, m = 16
DECOMP, m = 64
GEDF, m = 64

2 1.8 1.6 1.4 1.2 1

Speedup

(c) Comparison as m changes(G(n, p) tasks, random
p, harmonic period).

0.5 0.56 0.625 0.714 0.833 1
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

DECOMP, m = 4
GEDF, m = 4
DECOMP, m = 16
GEDF, m = 16
DECOMP, m = 64
GEDF, m = 64

2 1.8 1.6 1.4 1.2 1

Speedup

(d) Comparison as m changes (L(n,m) tasks, har-
monic period).

Figure 8.3: Performance of GEDF (solid line) vs. DECOMP (dashed line) for different
values of m. GEDF is always better than DECOMP. In general, increasing the number
of processors generally increases failure rates.

fixed-p task sets as we kept p constant at 0.02 and varied m. Again, GEDF outperforms

DECOMP for all settings, even though small p is harder for GEDF. When m = 4, GEDF

can schedule all task sets at speed 1.4. The increase of m does not influence DECOMP

much, while it becomes slightly harder for GEDF to schedule a few (out of 1000) task sets.

41

A similar trend holds in the other cases in Figure 8.3 which show the results for different

parameter settings (arbitrary instead of harmonic period, random p instead of fixed p, etc).

Figure 8.3 also allows us to see other effects. For instance, we can compare the failure rates of

harmonic vs. arbitrary periods by comparing Figures 8.3(b) and 8.3(a). The figures suggest

that, in general, the harmonic and arbitrary period task sets behave similarly. It does appear

that tasks with arbitrary periods are slightly easier to schedule, especially for GEDF. This

is at least partially explained by the observation that, with harmonic periods, many tasks

have the same deadline, making it difficult for GEDF to distinguish between them. These

trends also hold for other parameter settings, and therefore we omit those figures to reduce

redundancy.

We also compare the effect of fixed vs. random p by comparing Figure 8.3(c) to Figure 8.3(a).

The former shows the failure ratio for GEDF and DECOMP for task sets where p is not

fixed, but is randomly generated for each task, as we vary m. Again, GEDF outperforms

DECOMP. Note, however, that GEDF appears to have a harder time for random p than in

the fixed p experiment.

8.2.2 Synchronous Method

Figure 8.3(d) shows the comparison between GEDF and DECOMP with varying m for

specially constructed synchronous task sets. In this case, the failure ratio for GEDF is

higher than for task sets generated with the Erdos-Renyi Method. We can also see that

sometimes DECOMP outperforms GEDF in terms of failure ratio and required speedup.

This indicates that synchronous tasks with highly parallel segments are indeed more difficult

for GEDF to schedule. However, even in this case, we never require a speedup of more than

2. Even though Figure 7.1 demonstrates that there exist task sets that require speedup of

more than 2, such pathological task sets never appeared in our randomly generated sample.

In conclusion, simulation results indicate that GEDF performs better than predicted by the

capacity augmentation bound. For most task sets, GEDF is also better than DECOMP.

42

Chapter 9

Parallel GEDF Platform

To demonstrate the feasibility of parallel GEDF scheduling, we implemented a simple pro-

totype platform called PGEDF by combining GNU OpenMP runtime system and the

LITMUSRT system. PGEDF is a straightforward implementation based on these off-the-

shelf systems and simply sets appropriate parameters for both OpenMP and LITMUSRT

without modifying either. It is also easy to use this platform; the user can write tasks as

programs with standard OpenMP directives and compile them using the g++ compiler. In

addition, the user provides a task-set configuration file that specifies the tasks in the task-

set and their deadlines. The platform uses the GEDF plug-in of LITMUSRT to execute the

tasks. To validate the theory we present, PGEDF is configured for CPU intensive workloads

and cache or I/O effects are beyond the scope this paper. We first describe the relevant

aspects of OpenMP and LITMUSRT and then describe the specific settings that allow us to

run parallel real-time tasks on this platforms.

9.1 Background

We briefly introduce the GNU OpenMP runtime system and the LITMUSRT patched Linux

operating system, with an emphasis on the particular features that our PGEDF relies on in

order to realize parallel GEDF scheduling.

43

9.1.1 OpenMP Overview

OpenMP is a specification for parallel programs that defines an open standard for parallel

programming in C, C++, and Fortran [60]. It consists of a set of compiler directives, library

routines and environment variables, which can influence the runtime behavior. Our PGEDF

implementation uses a GNU implementation of OpenMP runtime system (GOMP), which

is part of the GCC (GNU Compiler Collection).

In OpenMP, logical parallelism in a program is specified through compiler pragma state-

ments. For example, a regular for-loop can be transformed into a parallel for-loop by simply

adding #pragma omp parallel for above the regular for statement. This gives the system

permission to execute the iterations of the loop independently in parallel with each other. If

the compiler does not support OpenMP, the pragma will be ignored, and the for-loop will

be executed sequentially. On the other hand, if OpenMP is supported, then the runtime

system can choose to execute these iterations in parallel. OpenMP also supports other par-

allel constructs; however, for our prototype of PGEDF, we only support parallel synchronous

tasks. These tasks are described as a series of segments which can be parallel or sequential.

A parallel segment is described as a parallel for-loop while a sequential segment consists of

arbitrary sequential code. Therefore, we will restrict our attention to parallel for-loops.

We now briefly describe the OpenMP (specifically GOMP) runtime strategy for such pro-

grams. Under GOMP, each OpenMP program starts with a single thread, called the master

thread . During execution, when the runtime system encounters the first parallel section of

the program, the master thread will create a thread pool and assign that team of threads

to the parallel region. The threads created by the master thread in the thread pool are called

worker threads. The number of worker threads can be set by the user.

The master thread executes the sequential segments. In parallel segments (parallel for-

loops), each iteration is considered a unit of work and maps (distributes) the work to the

team of threads according to the chosen policies, as specified by arguments passed to the

omp set schedule() function call. In OpenMP, there are three different kind of policies:

dynamic, static and guided policies. In the static 1 policy, all iterations are divided

among the team of threads at the start of the loop, and iterations are distributed to threads

one by one: each thread in the team will get one iteration at a time in a round robin manner.

44

Once a thread finishes all its assigned work from a particular parallel segment, it waits for

all other threads in the team to finish before moving on to the next segment of the task. The

waiting policy can be set by via the environment variable OMP WAIT POLICY. Using passive

synchronization, waiting threads are blocked and put into the Linux sleep queue, where they

do not consume CPU cycle while waiting. On the other hand, active synchronization would

let waiting threads spin without yielding the processors, which would consume CPU cycles

while waiting.

One important property of the GOMP, upon which our implementation relies, is that the

team of threads for each program is reusable . After the execution of a parallel region,

the threads in the team are not destroyed. Instead, all threads except the master thread

wait for the next parallel segment, again according to the policy set by OMP WAIT POLICY.

The master thread continues the sequential segment. When it encounters the next parallel

segment GOMP runtime system detects that it already has a team of threads available to

it, and simply reuses them for executing this segment, as before.

9.1.2 LITMUSRT Overview

LITMUSRT (Linux Testbed for Multiprocessor Scheduling in Real-Time Systems) is an

algorithm-oriented real-time extension of Linux [16]. It focuses on multiprocessor real-time

scheduling and synchronization. Many real-time schedulers, including global, clustered, par-

titioned and semi-partitioned schedulers are implemented as plug-ins for Linux. Users can

use these schedulers for real-time tasks, and standard Linux scheduling for non-real-time

tasks.

In LITMUSRT, the GEDF implementation is meant for sequential tasks. A typical LITMUSRT

real-time program contains one or more rt tasks (real-time tasks), which are released peri-

odically. In fact, each rt task can be regarded as a rt thread , which is a standard Linux

thread with real-time parameters. Under the GEDF scheduler, a rt task can be suspended

and migrated to a different CPU core according to the GEDF scheduling strategy. The

platform consists of three main data structures to hold these tasks: a release queue, a one-

to-one processor mapping, and a shared ready queue. The release queue is implemented as a

priority queue with a clock tick handler, and is used to hold waiting-to-be-released jobs. The

45

one-to-one processor mapping has the thread that corresponds to each job that is currently

executing on each processor. The ready queue (shared by all processors) is implemented as

a priority queue by using binomial heaps for fast queue-merge operations triggered by jobs

with coinciding release times.

In order to run a sequential task as a real-time task under GEDF, LITMUSRT provides an

interface to configure a thread as an rt tasks. The following steps must be taken to properly

configure these [18]:

1. First, function init rt thread() is called to initialize the user-space real-time inter-

face for the thread.

2. Then, the real-time parameters of the thread are set by calling

set rt task param(getid(),&rt task param): the getid() function will return the

actual thread ID in the system; the real-time parameters, including period, relative

deadline, execution time and budget policy, are stored in the rt task param structure;

these parameters will then be stored in the TCB (thread control block) using the

unique thread ID and they will be validated by the kernel.

3. Finally, task mode(LITMUS RT TASK) is called to start running the thread as a real-

time task.

The periodic execution of jobs of rt tasks is achieved by calling LITMUSRT system calls

as well. In particular, after each period, sleep next period() must be called to ask

LITMUSRT to move the thread from the run queue to the release queue. The thread sleeps

in the release queue and the GEDF scheduler within the LITMUSRT will automatically

move it to the ready queue at its next absolute release time. The thread will eventually

be automatically woken up and executed according to GEDF priority based on its absolute

deadline.

46

9.2 PGEDF Platform Implementation

Now we describe how our PGEDF platform integrates the GOMP runtime with GEDF

scheduling in LITMUSRT to execute parallel real-time tasks. The PGEDF platform provides

two key features: parallel task execution and real-time GEDF scheduling. The GOMP

runtime system is used to perform parallel execution of each task, while real-time execution

and GEDF scheduling is realized by the LITMUSRT GEDF plug-in.

9.2.1 Programming Interface

Currently, PGEDF only supports synchronous task sets with implicit deadlines — tasks

which consist of a sequence of segments and each segment is either a parallel segment (spec-

ified using a parallel-for loop) or a sequential segment (specified as regular code).

#inc lude <omp . h>
#inc lude ” task . h”
i n t i n i t (i n t argc , char ∗argv []) {

// I n i t i a l i z e the task
}
i n t run (i n t argc , char ∗argv []) {

// Arb i t rary p a r a l l e l code
}
i n t f i n a l i z e (i n t argc , char ∗argv []) {

// Clean up a f t e r the task
}
t a s k t task = { i n i t , run , f i n a l i z e } ;

Figure 9.1: Task Program Format

The task structure is shown in Figure 9.1. Tasks are C or C++ programs that include

a header file (task.h) and conform to a simple structure: instead of a main function, a

programmer specifies a run function, which is executed when a job of the task is invoked.

Tasks can also specify optional initialize and finalize functions, each of which (if not

null) will be called once, before the first and after the last call to the run function, respectively.

These optional functions let tasks set up and clean up resources as needed.

47

Additionally, a configuration file must be specified for the task set, specifying runtime param-

eters (such as program name and arguments) and real-time parameters (such as worst-case

execution time, critical-path length, and period) for each task in the task set. This separate

specification makes it flexible and easy to maintain; e.g., we do not have to recompile tasks

in order to change timing constraints. The configuration file format is shown in Figure 9.2.

SystemFirstCore SystemLastCore
Task1ProgramName Task1Arg1 Task1Arg2 . . .
Task1 : WorstCaseExecutionTime Cr i t i ca lPathLength Period NumIterations
. . .
TasknProgramName TasknArg1 TasknArg2 . . .
Taskn : WorstCaseExecutionTime Cr i t i ca lPathLength Period NumIterations

Figure 9.2: Format of the Configuration File

9.2.2 PGEDF Operation

Unlike sequential tasks where there is only one thread per rt task, for parallel tasks there

is a team of threads generated by OpenMP. Since all the threads in the team belong to the

same task, we must set all their deadlines (periods) to be the same. In addition, we must

make sure that all the threads of all the tasks are properly executed by the GEDF plug-in

in LITMUS. We now describe how to set the parameters of both OpenMP and LITMUS to

properly enforce this policy.

We first describe the specific parameter settings we have to use to ensure correct execution:

(1) We specify the static 1 policy within OpenMP to ensure that each thread gets ap-

proximately the same amount of work. (2) We also set the OpenMP thread synchronization

policy to be passive. As discussed in Chapter 9.1.1, PGEDF cannot allow spinning waiting

of threads. By using blocking synchronization, once a worker thread finishes its job, it will go

to sleep immediately and yield the processor to threads from other tasks. Then the GEDF

scheduler will assign the available core to the thread in the front of the prioritized ready

queue. Thus, the idle time of one task can be utilized by other tasks, which is consistent

with GEDF scheduling theory. (3) For each task, we set the number of threads to be equal

to the number of available cores, m, using the GOMP function call omp set num threads(m).

This means that if there are n tasks in the system, we will have a total of mn threads in

48

the system. (4) In LITMUSRT, the budget policy is set equal to NO ENFORCEMENT and the

execution time of a thread is set to be the same as the relative deadline, as we do not need

bandwidth control.

In addition to this parameter settings, PGEDF also does additional work to ensure that

all the task parameters are set correctly. In particular, the actual code that is executed by

PGEDF for each task is shown in Figure 9.3. In this code, before we run the task’s actual

run function for the first time, PGEDF performs some additional initialization in the form

of a parallel for-loop. In addition, after each periodic execution of the task’s run function,

PGEDF executes an additional for-loop.

#pragma omp p a r a l l e l f o r schedu le (s t a t i c , 1)
f o r (unsigned i = 0 ; i < num cores ; i++)

r t t h r e a d (per iod , dead l ine) ;

f o r (unsigned j = 0 ; j < num periods ; j++)
{

task . run (task argc , ta sk argv) ;

#pragma omp p a r a l l e l f o r schedu le (s t a t i c , 1)
f o r (unsigned i = 0 ; i < num cores ; i++)

s l e e p n e x t p e r i o d () ;
}

Figure 9.3: Main Structure of Each Real-Time Task in PGEDF

Let us first look at the initial for-loop. This parallel for-loop is meant to set the proper

real-time parameters for this task to be correctly scheduled by GEDF plug-in in LITMUSRT.

We must set the real-time parameters for the entire team of OpenMP threads of this task.

However, OpenMP threads are designed to be invisible to programmers, so we have no direct

access to them. We get around this problem by using this initial for-loop, which has exactly

m iterations — recall that each task has exactly m threads in its thread pool. Note that

before this parallel for-loop, we set the scheduling policy to be static 1 policy, which is a

round robin static mapping between iterations and threads. Therefore, due to the static

1 policy, each iteration is mapped to exactly 1 thread in the thread pool. Therefore, even

though we cannot directly access OpenMP threads, we can still set real-time parameters for

them inside the initial parallel for-loop by calling rt thread(period, deadline) within

49

this loop. This function is defined within the PGEDF platform to perform configuration

for LITMUSRT. In particular, the configuration steps described in the itemized list in the

previous section are performed by this function. Since the thread team is reused for all

parallel regions of the same program, we only need to set the real-time parameters for it

once during task initialization; we need not set it at each job invocation.

After initialization, each task is periodically executed by task.run(task argc, task argv),

inside which there could be multiple parallel for-loops executed by the same team of threads.

Periodic execution is achieved by the parallel for-loop after the task.run function; after each

job invocation, this loop ensures that sleep next period() is called by each thread in the

thread pool. Note again that since the number of iterations in this parallel for-loop is m,

each thread will get exactly one iteration ensuring that each thread calls this function. This

last for-loop is similar to the initialization for-loop, but tells the system that all the threads

in the team of this task have finished their work and that the system should only wake them

up when next period begins.

We can now briefly argue that these settings guarantee the correct GEDF execution. After

we appropriately set the real-time parameters, all the relative deadlines will be automatically

converted to absolute deadlines when scheduled by the LITMUSRT. Since each thread in

the same team of a particular task has the same deadline, all threads of this task have the

same priority. Also, threads of a task with an earlier deadline have higher priority than the

threads of the task with later deadlines — this is guaranteed by LITMUSRT GEDF plug-in.

Since the number of threads allocated to each program is equal to the number of cores, as

required by GEDF, each job can utilize the entire machine when it is the highest priority

task and has enough parallelism. If it does not have enough parallelism, then some of its

threads sleep and yield the machine to the job with the next highest priority. Therefore,

the GEDF scheduler within the LITMUSRT enforces the correct priorities using the ready

queue.

50

Chapter 10

Experimental Evaluation of PGEDF

We now describe our empirical evaluation of PGEDF using randomly generated tasks in

OpenMP. Our experiments indicate that the parallel GEDF scheduling algorithm provides

good real-time performance and that PGEDF outperforms the only other openly available

parallel real-time platform, RT-OpenMP [30], in most cases.

10.1 Experimental Machines

Our experimental hardware is a 16-core machine with two Intel Xeon E5-2687W processors.

We use the LITMUSRT patched Linux kernel 3.10.5 and the GOMP runtime system from

GCC version 4.6.3. The first core of the machine is always reserved in LITMUSRT for

releasing jobs periodically when running experiments. In order to test both single-socket

and multi-socket performance, we ran two configurations — one with 7 experimental cores

(with 1 reserved for releasing jobs and the other 8 disabled) and one with 14 experimental

cores (with 1 reserved for releasing jobs and 1 disabled). For experiments with m available

cores for task sets (m = 7 or 14 in our experiments) and one reserved core for releasing tasks,

we set the number of cores for the system through the Linux kernel boot time parameter

maxcpus=m + 1. After rebooting the system, only m + 1 total cores are available and the

rest of the cores are disabled entirely.

51

10.2 Task Set Generation

We ran our experiments on synchronous tasks written in OpenMP as shown in Figure 9.1.

Each task consists of a sequence of segments, where each segment is a parallel for-loop. The

segments are of varying lengths and numbers of iterations. We ran 6 categories of task sets

(shown in Table 10.1), with T7:LP:LS:Har using 7 cores and the rest using 14 cores. Here,

we describe how we randomly generate task sets for our empirical evaluation. For each task,

we first randomly selected its period (and deadline) D in a range between 4ms to 128ms.

For task sets with harmonic deadlines, periods were always chosen to be one of {4ms, 8ms,

16ms, 32ms, 64ms, 128ms}, while for arbitrary deadlines, periods can be any value between

4ms and 128ms.

The task sets vary along two other dimensions: (1) Tasks may have low-parallelism or

high-parallelism . We control the parallelism by controlling the average number of itera-

tions in each parallel for-loop. For low-parallelism task sets, the number of iterations in each

parallel for-loop is chosen from a log-normal distribution with mean 8. For high-parallelism

task sets, the number of iterations is chosen from a log-normal distribution with mean 12. In

Table 10.1, the high parallelism task sets have HP in their label while low-parallelism tasks

have LP in their label. Note that high-parallelism task sets have fewer tasks per task set

on average since each individual task typically has higher utilization. (2) Tasks may have

low-slack (LS) or high-slack (HS). We control the slack of a task by controlling the ratio

between its critical path length and deadline. For low-slack task, their critical path length

can be as large as their period. For high-slack tasks, their critical path length is at most half

their deadline. In general, low-slack tasks are more difficult to schedule.

Total Avg. Avg. #Tasks

Name #Cores Deadline L/D #iterations per TaskSet

T14:LP:LS:Har 14 Harmonic 100% 8 5.03
T14:HP:LS:Har 14 Harmonic 100% 12 3.38
T14:LP:HS:Har 14 Harmonic 50% 8 8.58
T14:HP:HS:Har 14 Harmonic 50% 12 5.22
T7:LP:LS:Har 7 Harmonic 100% 8 3.66
T7:HP:HS:Har 7 Harmonic 50% 12 3.47
T14:HP:LS:Arb 14 Arbitrary 100% 12 3.33

Table 10.1: Task Set Characteristics

52

For all types of jobs, the execution time of each iteration was chosen from a log-normal

distribution with a mean of 700 micro-seconds. Segments were added to the task until adding

another segment would make its critical-path length longer than the desired maximum ratio

(1/2 for high-slack tasks and 1 for low-slack tasks). Each task set starts empty and tasks

were successively added until the total utilization ratio was between 98% and 100% of m —

the number of cores in the machine. For example, for 14-core experiments, total utilization

was between 13.72 and 14.

As with the numerical simulation experiments described in Chapter 8, we wished to under-

stand the effects of speedup. We achieved the desired speedup by scaling down the execution

time of each iteration of each segment of each task in each task set. For each experiment,

we first generated 100 task sets with total utilization between 0.98m and m, and then scaled

down the execution time by the desired speedup 1/b. For example, for a speedup of 2, a

iteration with execution time of 700 micro-seconds will be scaled down to 350 micro-seconds,

and the total utilization of the task set will be about 7 for a 14-core experiment. In this

manner, without scaling the actual core speed, we can achieve the desired speedup compared

to the original task set. We evaluate the following speedup values {5, 3.3, 2.5, 2, 1.8, 1.6,

1.4, 1.2}, which correspond to total utilizations {20%, 30%, 40%, 50%, 56%, 62.5%, 71.4%,

83.3%} of m.

10.3 Baseline Platform

We compared the performance of PGEDF with the only other open source platform, RT-

OpenMP from [30] — labeled RT-OpenMP — that can schedule parallel synchronous

task sets on multicore system. RT-OpenMP is based on a task decomposition scheduling

strategy similar to the DECOMP algorithm in Chapter 8: parallel tasks are decomposed

into sequential subtasks with intermediate release times and deadlines. These sequential

tasks are scheduled using a partitioned deadline monotonic scheduling strategy [31]. This

decomposition based scheduler was shown to guarantee a capacity augmentation of 5 [64].

In theory, any valid bin-packing strategy provides this augmentation bound. The original

paper [30] compared a worst-fit and best-fit bin-packing strategy for partitioning and found

53

that worst-fit always performed better. Therefore, we only compare PGEDF (solid line in

figures) vs. RT-OpenMP (dashed line in figures) with worst-fit bin-packing.

10.4 Experiment Results

For all experiments, each task set was run for 1000 hyper-periods for harmonic deadlines

and 1000 times the largest period for arbitrary deadlines. In our experiments, we say that

a task set failed if any task missed any deadline over the entire run of the experiment. In

all figures, we plot the failure rate — the ratio of the failed task sets to the total number

of task sets. The x-axis is the task set’s utilization as a percentage of m. For example, 50%

utilization in a 14-core experiment has a total utilization of 7. This setting is also equivalent

to running the experiment on a machine of speed-2 — this speedup factor is shown on the

top of the figures as the x-axis.

Figure 10.1(a) shows the failure ratio for task sets with low-parallelism, low-slack and har-

monic periods on 14 cores. PGEDF outperforms RT-OpenMP for almost all utilizations.

For instance at speed 3.3, PGEDF cannot schedule 1 task set, while RT-OpenMP fails on

26. At speed 5, GEDF can schedule all task sets, but 15 task sets miss deadlines under

RT-OpenMP.

First, we look at the effect of slack. Recall that low-slack task sets can have tasks with long

critical-path lengths (as long as the deadline) while high-slack jobs have smaller critical-path

lengths (at most half the deadline). Let us first compare Figures 10.2(b) and 10.1(b) which

show the failure ratios of high and low-slack task sets at the high-parallelism setting. For

both systems, the high-slack tasks are easier to schedule, as expected. We see similar results

in Figures 10.2(a) and 10.1(a) when comparing high and low-slack tasks with low-parallelism.

However, for both settings, RT-OpenMP appears to be more sensitive to slack than PGEDF.

This is due to the fact that RT-OpenMP performs a careful decomposition of tasks based

on the available slack — therefore, in a low-slack setting, it is harder for it to find a good

decomposition.

We now look at the influence of the degree of parallelism in task sets. First, we look at

the task sets with high-slack. Figures 10.2(a) and 10.2(b) show the results for high and

54

0.2 0.3 0.4 0.5 0.560.625 0.714 0.833
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

RT−OpenMP
PGEDF

5 3.3 2.5 2 1.8 1.6 1.4 1.2
Speedup

(a) T14:LP:LS:Har (with low-parallelism).

0.2 0.3 0.4 0.5 0.560.625 0.714 0.833
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization
T

as
k

S
et

 F
ai

lu
re

 R
at

io

RT−OpenMP
PGEDF

5 3.3 2.5 2 1.8 1.6 1.4 1.2
Speedup

(b) T14:HP:LS:Har (with high-parallelism).

Figure 10.1: Failure ratio of PGEDF vs. RT-OpenMP with different percentages of
utilization (speedup) for 14-core task sets with low-slack and harmonic periods.

0.2 0.3 0.4 0.5 0.560.625 0.714 0.833
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

RT−OpenMP
PGEDF

5 3.3 2.5 2 1.8 1.6 1.4 1.2
Speedup

(a) T14:LP:HS:Har (with low-parallelism).

0.2 0.3 0.4 0.5 0.560.625 0.714 0.833
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

RT−OpenMP
PGEDF

5 3.3 2.5 2 1.8 1.6 1.4 1.2
Speedup

(b) T14:HP:HS:Har (with high-parallelism).

Figure 10.2: Failure ratio of PGEDF vs. RT-OpenMP with different percentages of
utilization (speedup) for 14-core task sets with high-slack and harmonic periods.

55

low-parallelism task sets for high-slack setting. Note that higher-parallelism task sets have a

higher failure ratio than the low-parallelism task sets for both platforms, but the difference

is not significant. Now we take a look at the low-slack case — Figures 10.1(a) and 10.1(b)

show the results for high and low-parallelism task sets. Now the results are reversed —

both platforms perform better on high-parallelism task sets than on low-parallelism task

sets. We believe that these results are due to the fact that low-parallelism task sets have

a larger number of total tasks per task set (shown in Table 10.1) — which leads to higher

overhead due to a larger number of total threads. For low-slack tasks, the slack between

deadline and critical-path length is relatively small, so they are more sensitive to overhead —

therefore, when there are a large number of threads (low-parallelism task sets), they perform

worse. Also note that this effect is much more pronounced on RT-OpenMP than on PGEDF,

indicating that PGEDF may be less effected by overheads and more scalable.

0.2 0.3 0.4 0.5 0.560.625 0.714 0.833
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

RT−OpenMP
PGEDF

5 3.3 2.5 2 1.8 1.6 1.4 1.2
Speedup

(a) T14:HP:LS:Arb (with arbitrary periods).

Figure 10.3: Failure ratio of PGEDF vs. RT-OpenMP with different percentages of
utilization (speedup) for 14-core task sets with low-slack and high-parallelism.

Comparing Figures 10.1(b) and 10.3(a), we can see the effect of harmonic and arbitrary

deadlines. For PGEDF, task sets with arbitrary deadlines are easier to schedule than har-

monic deadlines — this is not surprising since many jobs have the same priority (absolute

deadlines) when periods are harmonic. GEDF cannot distinguish between jobs having the

same deadline but different remaining critical-path length. So, it may decide to delay threads

from the job with the largest remaining critical-path length and execute others first. In such

56

cases, after finishing other work, even though all cores are available for that job, the remain-

ing time may not be enough to finish the sequential execution of the remaining critical-path

(when speedup is less than the capacity bound of 4), and the job will miss its deadline. On

the other hand, RT-OpenMP does not show clear advantage for arbitrary deadlines. Again,

this is not surprising, since RT-OpenMP decomposes tasks into sequential subtasks and

schedules them using fixed priorities based on their sub-deadlines. Even if the end-to-end

tasks are harmonic, these decomposed subtasks are unlikely to be harmonic.

0.2 0.3 0.4 0.5 0.560.625 0.714 0.833
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

RT−OpenMP
PGEDF

5 3.3 2.5 2 1.8 1.6 1.4 1.2
Speedup

(a) T7:LP:LS:Har (with low-parallelism, low-slack).

0.2 0.3 0.4 0.5 0.560.625 0.714 0.833
0

0.2

0.4

0.6

0.8

1

Percentage of Utilization

T
as

k
S

et
 F

ai
lu

re
 R

at
io

RT−OpenMP
PGEDF

5 3.3 2.5 2 1.8 1.6 1.4 1.2
Speedup

(b) T7:HP:HS:Har (with high-parallelism, high-
slack).

Figure 10.4: Failure ratio of PGEDF vs. RT-OpenMP with different percentages of
utilization (speedup) for 7-core task sets.

Finally, note that there is a significant difference between the simulation results in Chapter

8 and these experiments. In simulation, GEDF required a speedup of at most 2, while here

it often requires speedup of 2.5 or more. This is not surprising, since real platforms have

overheads that are completely ignored in simulations. In particular, for 14 core experiments

on our machines, there is high inter-socket communication overhead of the operating system,

which is ignored by theory and is not considered in simulation.

Therefore, we also conduct experiments on 7 cores in the same socket (shown in Figure

10.4(a) and 10.4(b)) also with harmonic periods. We can see that at a speedup of 2, all task

sets are schedulable under PGEDF, indicating that inter-socket communication does play

a significant role in these experimental results. Both experiments have roughly the same

57

number of tasks per task set. We can see the trend that RT-OpenMP performs a lot worse

with low-slack still holds in Figure 10.4. With high-slack, RT-OpenMP has similar failure

ratio to PGEDF, while with low-slack, it is much worse than PGEDF.

In conclusion, PGEDF performs better in all experiments and generally requires lower

speedup to schedule task sets than RT-OpenMP. In addition, the capacity augmentation

bound of 4 for the GEDF scheduler holds for all experiments conducted here.

58

Chapter 11

Conclusions

In this paper, we have presented the best bounds known for GEDF scheduling of parallel tasks

represented as DAGs. In particular, we proved that GEDF provides a resource augmentation

bound of 2−1/m for sporadic task sets with arbitrary deadlines and a capacity augmentation

bound of 4 − 2/m with implicit deadlines. The capacity augmentation bound also serves

as a simple schedulability test, namely, a task set is schedulable on m cores if (1) m is at

least 4− 2/m times its total utilization, and (2) the implicit deadline of each task is at least

4− 2/m times its critical-path length. We also presented another fixed point schedulability

test for GEDF.

We simulated randomly generated DAG tasks with a variety of settings. In these simulations,

we never saw a required capacity augmentation of more than 2 on randomly generated task

sets. For computationally intensive jobs, our experiments indicate that this platform out-

performs a previous platform that relies on task decomposition.

There are three possible directions of future work. First, we would like to extend the capacity

augmentation bounds to constrained and arbitrary deadline. In addition, while we prove that

a capacity augmentation bound of more than 3+
√
5

2
is needed, there is still a gap between this

lower bound and the upper bound of (4− 2/m) for capacity augmentation, which we would

like to close. Finally, we would like to conduct experiments on real platform to quantify

the performance of GEDF and to measure its overheads, and improve the schedulability test

including overheads based on these experiments.

59

References

[1] Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive work-
stealing with parallelism feedback. ACM Trans. Comput. Syst., 26, September 2008.

[2] James H. Anderson and John M. Calandrino. Parallel real-time task scheduling on
multicore platforms. In RTSS ’06, 2006.

[3] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multiprocessors.
In RTSS ’01, pages 193–202, dec. 2001.

[4] B. Andersson and J. Jonsson. The utilization bounds of partitioned and pfair static-
priority scheduling on multiprocessors are 50%. In ECRTS ’03, pages 33–40, 2003.

[5] Björn Andersson and Dionisio de Niz. Analyzing global-edf for multiprocessor scheduling
of parallel tasks. In Principles of Distributed Systems, pages 16–30. 2012.

[6] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig. Response-time
analysis of parallel fork-join workloads with real-time constraints. In ECRTS ’13, 2013.

[7] T.P. Baker and S.K. Baruah. Sustainable multiprocessor scheduling of sporadic task
systems. In ECRTS ’09, pages 141 –150, july 2009.

[8] Sanjoy Baruah and Theodore Baker. Schedulability analysis of global edf. Real-Time
Systems, 38(3):223–235, 2008.

[9] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian
Stiller. Improved multiprocessor global schedulability analysis. Real-Time Syst.,
46(1):3–24, September 2010.

[10] Sanjoy Baruah, Vincenzo Bonifaciy, Alberto Marchetti-Spaccamelaz, Leen Stougiex,
and Andreas Wiese. A generalized parallel task model for recurrent real-time processes.
In RTSS ’12, 2012.

[11] S.K. Baruah. Optimal utilization bounds for the fixed-priority scheduling of peri-
odic task systems on identical multiprocessors. Computers, IEEE Transactions on,
53(6):781–784, june 2004.

[12] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of global scheduling
algorithms on multiprocessor platforms. Parallel and Distributed Systems, 20(4):553
–566, april 2009.

60

[13] Marko Bertogna and Sanjoy Baruah. Tests for global edf schedulability analysis. J.
Syst. Archit., 57(5):487–497, 2011.

[14] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. Feasibility analysis in
the sporadic dag task model. In ECRTS ’13, 2013.

[15] Björn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating
Systems. PhD thesis, The University of North Carolina at Chapel Hill, 2011.

[16] Björn B. Brandenburg and James H. Anderson. On the implementation of global real-
time schedulers. In RTSS ’09, 2009.

[17] John M. Calandrino and James H. Anderson. On the design and implementation of a
cache-aware multicore real-time scheduler. In ECRTS ’09, 2009.

[18] Felipe Cerqueira and Björn B Brandenburg. A comparison of scheduling latency in
linux, preempt-rt, and litmusrt. OSPERT 2013, page 20, 2013.

[19] Hoon Sung Chwa, Jinkyu Lee, Kieu-My Phan, Arvind Easwaran, and Insik Shin. Global
edf schedulability analysis for synchronous parallel tasks on multicore platforms. In
ECRTS ’13, 2013.

[20] Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job parallelism in
real-time scheduling theory. Inf. Process. Lett., 106(5):180–187, 2008.

[21] Daniel Cordeiro, Grgory Mouni, Swann Perarnau, Denis Trystram, Jean-Marc Vincent,
and Frdric Wagner. Random graph generation for scheduling simulations. In SIMUTools
’10, 2010.

[22] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multipro-
cessor systems. ACM Comp. Surv., 43:35:1–44, 2011.

[23] Xiaotie Deng, Nian Gu, Tim Brecht, and KaiCheng Lu. Preemptive scheduling of
parallel jobs on multiprocessors. In SODA ’96, 1996.

[24] Umamaheswari C Devi. Soft real-time scheduling on multiprocessors. PhD thesis, Uni-
versity of North Carolina, 2006.

[25] UmaMaheswari C Devi and James H Anderson. Tardiness bounds under global edf
scheduling on a multiprocessor. Real-Time Systems, 38(2):133–189, 2008.

[26] Maciej Drozdowski. Real-time scheduling of linear speedup parallel tasks. Inf. Process.
Lett., 57(1):35–40, 1996.

[27] J. Erickson, U. Devi, and S. Baruah. Improved tardiness bounds for global edf. In
ECRTS ’2010.

61

[28] Jeremy P Erickson and James H Anderson. Fair lateness scheduling: Reducing maxi-
mum lateness in g-edf-like scheduling.

[29] Frédéric Fauberteau, Serge Midonnet, and Manar Qamhieh. Partitioned scheduling of
parallel real-time tasks on multiprocessor systems. SIGBED Rev., 8(3):28–31, sep 2011.

[30] David Ferry, Jing Li, Mahesh Mahadevan, Kunal Agrawal, Christopher Gill, and
Chenyang Lu. A real-time scheduling service for parallel tasks. In RTSS ’13, 2013.

[31] Nathan Fisher, Sanjoy Baruah, and Theodore P. Baker. The partitioned scheduling of
sporadic tasks according to static-priorities. In ECRTS ’06, 2006.

[32] Nathan Fisher, Joël Goossens, and Sanjoy Baruah. Optimal online multiprocessor
scheduling of sporadic real-time tasks is impossible. Real-Time Syst., 45(1-2):26–71,
2010.

[33] Gamma. Gamma distribution, Distribution. http://en.wikipedia.org/wiki/Gamma_
distribution.

[34] Jol Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of periodic
task systems on multiprocessors. Real-Time Systems, 25(2):187–205, 2003.

[35] A. Gujarati, F. Cerqueira, and B. Brandenburg. Schedulability analysis of the linux
push and pull scheduler with arbitrary processor affinities. In ECRTS ’13.

[36] Huang-Ming Huang, Terry Tidwell, Christopher Gill, Chenyang Lu, Xiuyu Gao, and
Shirley Dyke. Cyber-physical systems for real-time hybrid structural testing: a case
study. In ICCPS ’10, 2010.

[37] Intel. Intel CilkPlus. http://software.intel.com/en-us/articles/

intel-cilk-plus.

[38] S. Kato and Y. Ishikawa. Gang EDF scheduling of parallel task systems. In RTSS ’09,
2009.

[39] J. Kim, H. Kim, K. Lakashmanan, and R. Rajkumar. Parallel scheduling for cyber-
physical systems: Analysis and case study on a self-driving car. In ICCPS ’13, 2013.

[40] JFC Kingman. Inequalities in the theory of queues. Journal of the Royal Statistical
Society. Series B (Methodological), pages 102–110, 1970.

[41] M. Korsgaard and S. Hendseth. Schedulability analysis of malleable tasks with arbitrary
parallel structure. In RTCSA ’11, 2011.

[42] Oh-Heum Kwon and Kyung-Yong Chwa. Scheduling parallel tasks with individual
deadlines. Theor. Comput. Sci., 215(1-2):209–223, 1999.

62

[43] Karthik Lakshmanan, Shinpei Kato, and Ragunathan (Raj) Rajkumar. Scheduling
parallel real-time tasks on multi-core processors. In RTSS ’10, 2010.

[44] Jinkyu Lee and Kang G. Shin. Controlling preemption for better schedulability in
multi-core systems. In RTSS ’12, Dec. 2012.

[45] Wan Yeon Lee and Heejo Lee. Optimal scheduling for real-time parallel tasks. IEICE
Trans. Inf. Syst., E89-D(6):1962–1966, 2006.

[46] Juri Lelli, Dario Faggioli, Tommaso Cucinotta, and Giuseppe Lipari. An experimen-
tal comparison of different real-time schedulers on multicore systems. J. Syst. Softw.,
85(10):2405–2416, October 2012.

[47] Juri Lelli, Dario Faggioli, Tommaso Cucinotta, and Scuola Superiore. An efficient and
scalable implementation of global edf in linux. In OSPERT ’11, 2011.

[48] Hennadiy Leontyev and James H Anderson. Generalized tardiness bounds for global
multiprocessor scheduling. Real-Time Systems, 44(1-3):26–71, 2010.

[49] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM, 20(1):46–61, 1973.

[50] Cong Liu and James H. Anderson. An o(m) analysis technique for supporting real-time
self-suspending task systems.

[51] Cong Liu and J.H. Anderson. Supporting soft real-time parallel applications on multi-
core processors. In RTCSA ’12, 2012.

[52] J. M. López, J. L. Dı́az, and D. F. Garćıa. Utilization bounds for edf scheduling on
real-time multiprocessor systems. Real-Time Syst., 28(1):39–68, October 2004.

[53] José Maŕıa López, José Luis Dı́az, Joaqúın Entrialgo, and Daniel Garćıa. Stochastic
analysis of real-time systems under preemptive priority-driven scheduling. Real-Time
Systems, 40(2):180–207, 2008.

[54] Amin Maghareh, Shirley J. Dyke, Arun Prakash, Gregory Bunting, and Payton Lindsay.
Evaluating modeling choices in the implementation of real-time hybrid simulation. In
EMI/PMC 2012, 2012.

[55] G. Manimaran, C. Siva Ram Murthy, and Krithi Ramamritham. A new approach for
scheduling of parallelizable tasks in real-time multiprocessor systems. Real-Time Syst.,
15(1):39–60, 1998.

[56] Alex F Mills and James H Anderson. A stochastic framework for multiprocessor soft real-
time scheduling. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2010 16th IEEE, pages 311–320. IEEE, 2010.

63

[57] Ingo Molnr. CONFIG PREEMPT RT Patch. https://rt.wiki.kernel.org/index.

php/Main_Page.

[58] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques optimizing the
number of processors to schedule multi-threaded tasks. In ECRTS ’12, 2012.

[59] Lus Nogueira and Lus Miguel Pinho. Server-based scheduling of parallel real-time tasks.
In International Conference on Embedded Software, 2012.

[60] OpenMP. OpenMP Application Program Interface v3.1, July 2011. http://www.

openmp.org/mp-documents/OpenMP3.1.pdf.

[61] Luigi Palopoli, Daniele Fontanelli, Nicola Manica, and Luca Abeni. An analytical bound
for probabilistic deadlines. In Real-Time Systems (ECRTS), 2012 24th Euromicro Con-
ference on, pages 179–188. IEEE, 2012.

[62] Constantine D. Polychronopoulos and David J. Kuck. Guided self-scheduling: A prac-
tical scheduling scheme for parallel supercomputers. IEEE Transactions on Computers,
C-36(12):1425–1439, 1987.

[63] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. Gill. Parallel real-time scheduling
of dags. IEEE Transactions on Parallel and Distributed Systems, PP(99):1–1, 2014.

[64] Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Multi-core
real-time scheduling for generalized parallel task models. In RTSS ’11, 2011.

[65] Anand Srinivasan and James H Anderson. Efficient scheduling of soft real-time appli-
cations on multiprocessors. In ECRTS, volume 3, pages 51–54, 2003.

[66] Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic task sys-
tems on multiprocessors. Information Processing Letters, 84(2):93 – 98, 2002.

[67] Qingzhou Wang and Kam Hoi Cheng. A heuristic of scheduling parallel tasks and its
analysis. SIAM J. Comput., 21(2), 1992.

64

	Global EDF Scheduling for Parallel Real-Time Tasks
	Recommended Citation

	tmp.1399912256.pdf.zGYFp

