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Angular Momentum
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Rotating Vectors

If r is a vector in 3D with components z, ¥, z,, a rotation by an angle ¢ about the 2-

T cos¢p —sing 0 x
[y] — [sinqS cos ¢ 0] . [y] .

axis transforms

z 0 0 1 z
That is,
d |z 0 -1 0 T —y
— Y =(1 0 O}-|y|l=]= (1)
d¢ Z $=0 0 0 1 F4 ¥4

Space is Isotropic

If the Hamiltonian for a system is invariant under rotations about the z-axis,

d 0H(p,r) dp 0H(p,r) dr
0 = -"—H ,1" = e—— -
agH P )Lb:o o dbly_o Or  dilyq

oH OH oH OH

Bp;,;py-*-apypx— 3:1:y+ dy ¥

: : . . d
=—&py+ypsthay—Pyr=—7 (zpy — ypu)

The corresponding (E. Nother) conserved quantity is the z-component of the angular mo-

mentum.



Angular Momentum 2 March 2015

Indicial notation

Rather than labeling coordinates x,y and z, let the coordinates be z;,7 = 1,2,3. A
vector (first rank tensor) is a quantity with a single index. Standard vector notation is

simplified if we adopt the rule that a repeated index is summed over 1,2, 3. Thus

3
TiPi= D _TIPP=T 6P
=1

To represent the vector cross product in indicial notation, let
1 ifi, 7,k =1,2,30r2,3,10r 3,1,2
€ =941 ifi,j,k=2130r3,2,10r1,32
0  otherwise

The angular momentum is a vector I with components

Ly = yp: — 2py,
Ly =Py — IP:,
L; = zpy — ypa.
That is,
L=rxp,  Li=¢;z5px
Rotations in quantum mechanics

If the rotation (1) is applied to ¥(z, ¥, 2),

. o i
s (:E!y’ z) = __$y+ AL = (mpy—ypz) ¢($:y$z) o Ethb(:E,y,z)

d¢

The physical rotation of the system corresponds to a coordinate shift in the opposite di-

rection, so we say that —i L : 2/} generates a rotation about an axis 7.

Let us denote the components of the angular momentum operator by Ly, Ly, L; (ie.,
drop the ~ symbols). The quantum mechanical operators then have the following com-

mutators,
[L;r, Ly] = ihLz,

[LT H Lz] s ‘th:r;
[Lz, L.’L'] —_— iﬁLg 3
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so only one component of L can be diagonal in any given basis set. If
L?=12+L2+ L3

then
0 = [Lg, LY = [Ly, L) = {L,, L2

Thus a basis set can simultaneously diagonalize one component of L and L2, Let ¥ aubea

basis set with )
L ‘I’r\u = ,\\Il,\ﬂ,

LZ‘I;A!; = p.\I’,\p.
If

then )

= £h(Ly £iLy) P, + p®
= (pxh)®.
Thus the operators
Ly =Lzxily

raise/lower p by fi. Since [L+, L2] = 0, the L2 eigenvalue is unaltered,
L2® = ).

Of course =V < p < VA, so, for any given A, there is a maximum and a minimum value

for p. Denoting these by p+,
Li®y,, =0 and L_®,, =0.
Since LyLy = L2 + L2 Fi[Lg, Ly] = L2 + L2 & KL,
0= (L2 + L2 FhLl)Ty,..

Thus
L?9,,, = (L2 £hL.)T,,,.
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This gives
-
from which it follows that u— = —u. If u4 = £h, then
—€h < p < £,
A= 00+ 1)R2

Let us relabel the states with A — £, 4 — mh. Thus we have states ¥, with, for each

6, —f<m<U.
Lz‘I’{‘m = mﬁ,\pgm,

L2, = L€+ 1)R2T,,,.
The number of such states, 2¢ 4+ 1, must be an integer. Thus £ is restricted to { =

0,1/2,1,3/2,...

While L shifts the L. eigenvalue 4 — p &£ i, it does not produce a normalized state

(the dimensions are wrong!). To see this, suppose that (¥p,,|¥p,,) = 1. Then

(Lt Uprnl Lt Vo) = Lz g L ) F i (Ly Yo Lt U )
= (Yoml|Lo L Ugr) F i (Wpm|Ly L Vo,
= (Upm|L3Ls V) = (Vg | (L2 — L2 F RL:)Tgy,)
= 0(C + 1)h? — m?h® T mh?
=(FEm)(+m+1)h?

We may thus identify

Li¥p, = \/{’: Fm)({tm+1) ﬁq’f,mi—l

The spin of the electron

Dirac constructed a relativistic theory for the electron in 1932. To do so, however, he

had to replace Schrédinger’s wave function with a spinor field, i.e.,
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that describes the electron-positron system. In the non-relativistic limit, a two component
spinor provides a good representation of the states of an electron. The discrete variable

that labels the components of the spinor corresponds to the electronic spin variable.

If £ = 1/2, there are just two possible ‘spin’ states. To construct a non-relativistic ma-

trix representation for the states, we introduce two basis vectors,

ll=[1]
73 0f’

a="
_ _ |0
p=vy4=[1]

In the {a, B} basis set,

171 o
Lz=§h[0 _1] (1a)
and
3 1 0
92 _ 9,9
L "4ﬁ [0 1]
Since
Lia=0, L_a=hp,
Lif=ha, L_f=0,
we deduce
L+=h[8 e L_=h[(1] 8].
Thus
1 170 1
L:!:—'2’(L++L-—)—§n 1 ol (1b)
_1 _ 170 —z']
Ly= 5L+ L..)_2h[z. < i (Lc)

These matrices (1a-c) are the Pauli spin matrices.

Proton magnetic resonance spectroscopy

Associated with the intrinsic spin (£ = %} of a proton is a magnetic moment g. For the

proton

’I="||’L,
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with the gyromagnetic ratio

v =2.67519 x 108 rad s71771

=1.52103 x 10°2%  atomic units.

The interaction of this magnetic moment with a magnetic field B is governed by the Zee-
man Hamiltonian
fI:-p+B=—7L-B= -8 - B,

with & = 3;% + 5yJ + 3:k, a vector operator with the Pauli spin matrices (1a-c) for compo-

nents.

For a constant field B the solution to the dynamical equation is
(1) = 7F 5y 0). (2)
Now a rotation by an angle d¢ about an axis 7t (a unit vector) moves points
r=er+édnxr

and transforms functions

W{r) = P(r — 6o 7 x ).

For small §¢,
P(r) = 9(r) —dd i x v - Vi(r)
=9(r)—d¢ 7 -7 x Vii(r)
= Y(r) ~ 286 A7 x P Y(r)
Thus :
and

Y(r,¢) =e #™Ly(r,0).
Comparison with (2) shows that in a constant magnetic field B the spin of the proton ro-

tates about the axis of B with rate —y|B|.

This (Larmor) precession of a spin leads to an oscillating magnetic moment which can
be observed by a detection coil. Hence ‘magnetic resonance spectroscopy’. In a real ex-

periment, however, the magnetic field B is not simply the field produced by an external

6
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electromagnet. In a sample of many spins each spin will see a slightly different B because

of local environmental effects.
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Problem Set #7

1. Show that the only state that can simultaneously be an eigenstate of L., Ly, and L; is the

£ = ( state.
2. Show that
L?=Lilz+L2FhL,
3. Construct a matrix representation for a system with £ = 1.

4. The hydrogen atom has two spin%; particles, the electron and the proton. In the elec-
tronic ground state all the angular momentum of the atom is associated with these spins.
If S and .§'p are the angular momenta of the electron and the proton, the total angular

momentum is

g = gg + S"p.
Since each spin can be represented in terms of an ¢, J basis set, the atom’s spin state can
be represented in terms of

Yyt = Qe Cp, ",Dﬂ, = ae Pp, "(b,];r = Pe ap, Py = Be Bp

In what basis set are S; and §2 both diagonal?

5. Show that
P(t) = 7Bt/ hy ()

is the solution to the dynamical equation for an electron in a constant magnetic field B.

In what basis set is e/7B"3/" diagonal? If ¥(0) = a, deduce an equation for {¢(¢)|L.1(t)).

6. Sketch a demonstration that a rotation by an angle d¢ about an axis 7 (a unit vector)
moves points

roar+dpnxr.

7. All spin states of a proton are of the form

o
b= .
b(t)
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We can associate with each state 1 a spin operator
§=25 1 = 5ycos¢sinf + §ysingsinf + 3, cosb,

with the unit vector 7 oriented in direction ¢, # in spherical coordinates, by requiring that
1 = Shap.
If

bla =retX,

relate 8, ¢ to 7, ¥. Conclusion: we can always describe a proton’s spin state {up to a phase

factor) by giving an orientation ‘@, ¢’ for the spin.

8. Use the results of question #7 to construct an animated exhibit of the motion of a spin
that is started in ¥(0) = « and then moves in an external field that is oriented in the di-

rection (a) z, (b) &, and (c) ‘/i.-z-[i + k).

Show|Graphics3D|[Line[{{0,0,0}, {x,y,2} }]], PlotRange—{{-1,1}, {-1,1},
{-1,1}}] will plot a line from the origin to the point z,y, z in a 3D frame.

9. Consider the motion of ¥(t) induced by

H=—vBjcosQt 5, +yBysinQt 3, —vBgs;

=—w (cos Qf 5p —sin§t .§y) — wps;.

How could this Hamiltonian be realized in the laboratory?
If 4 () = e~ wotd=/Rop(4) then

B (t) _

ih 5t e~ wotsz/h_1y) (cos Ut 85 — sin éy)]e“""té’/ﬁ P1(t).

1(t} is referred to colloquially as the ‘spin state in the rotating frame.” Why? Why must
2 =32 =52 = n?i/47 Show that

eiﬂtéz/figme—znt‘;"/ﬁ’ = cos §)t '§$ — 5in Qt c§y-

10
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Thus

maﬁl)a;t(t) = e iw0- Q8N 50D/ ()

If o(t) = 0= /R 4y (1),

Ota(t)

if 5

= (@ — wp)8: — w1a] Ya(d).

Suppose %(0) = a. Make an animation showing the time evolution of ¢(¢) if 2 = wp =
0.1w;. If Q = 0.9wp = 0.1 ?

10. Suppose that
H=-w (cos Ut 5, —sin .§y) — wpsz

again and By > By in the time interval 0 < yBjt < 7/2 (a ‘m/2 pulse’). Into what state
will this pulse transform ¥(0) = a? If By is then turned off, how will {give an analytic

expressions) (8;) subsequently evolve in time?

11. Suppose that this ‘pulse-observe 3;’ experiment is performed on an ensemble of protons
in which, because of differing local environments, the field By felt at each spin is a little

different. Let the distribution on wg values be

1 ~(wo~w)? /20 _

e
Varno

How will the resulting magnetic moment appear to the spectrometer?

11
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