Author's School

Arts & Sciences

Author's Department


Document Type


Publication Date


Originally Published In

Mol Plant. 2011 Sep;4(5):879-85. doi: 10.1093/mp/ssr077


The Arabidopsis FRA1 kinesin contributes to the organization of cellulose microfibrils through an unknown mechanism. The cortical localization of this kinesin during interphase raises the possibility that it transports cell wall-related cargoes along cortical microtubules that either directly or indirectly influence cellulose microfibril patterning. To determine whether FRA1 is an authentic motor protein, we combined bulk biochemical assays and single molecule fluorescence imaging to analyze the motor properties of recombinant, GFP-tagged FRA1 containing the motor and coiled-coil domains (designated as FRA1(707)–GFP). We found that FRA1(707)–GFP binds to microtubules in an ATP-dependent manner and that its ATPase activity is dramatically stimulated by the presence of microtubules. Using single molecule studies, we found that FRA1(707)–GFP moves processively along microtubule tracks at a velocity of about 0.4 μm s−1. In addition, we found that FRA1(707)–GFP is a microtubule plus-end-directed motor and that it moves along microtubules as a dimer. Interestingly, our single molecule analysis shows that the processivity of FRA1(707)–GFP is at least twice the processivity of conventional kinesin, making FRA1 the most processive kinesin to date. Together, our data show that FRA1 is a bona fide motor protein that has the potential to drive long-distance transport of cargo along cortical microtubules.


Final author manuscript version of Mol Plant. 2011 Sep;4(5):879-85. doi: 10.1093/mp/ssr077. © 2011 Elsevier.