Date of Award

Spring 5-15-2020

Author's School

Graduate School of Arts and Sciences

Author's Department


Degree Name

Doctor of Philosophy (PhD)

Degree Type



Neutron star mergers are the only situation in nature in which we find matter compressed to several times nuclear saturation density and temperatures of several tens of MeV. By observing and numerically simulating neutron star mergers, we can learn about the nature of matter at high temperatures and densities. Neutron star merger simulations evolve Einstein's equations of general relativity coupled to the equations of relativistic hydrodynamics along with a nuclear equation of state, which describes the neutron star matter. Many simulations also take into account neutrino transport and electrodynamics. The purpose of this thesis is to see whether other physical processes, including thermal transport and viscosity, are relevant to neutron star mergers and thus should be included in merger simulations. After an introduction to the QCD phase diagram, the nuclear equations of state, and neutron star mergers, I discuss three projects related to transport and nuclear matter in neutron star mergers. The first is the nature of beta equilibrium in the portion of a merger that is transparent to neutrinos. We calculate the weak interaction (Urca) rates and find that the beta equilibrium condition needs to be modified by adding an additional chemical potential, which changes slightly the particle content in neutrino-transparent beta equilibrium. Secondly, we calculate the bulk viscosity in neutrino-transparent nuclear matter in conditions encountered in neutron star mergers. Bulk viscosity arises from a phase lag between the pressure and density in the nuclear matter, which is due to the finite rate of beta equilibration. When bulk viscosity is sufficiently strong, which happens when the equilibration rate nearly matches the frequency of the density oscillation, it can noticeably dampen the oscillation. We find that in certain thermodynamic conditions likely encountered in mergers, oscillations in nuclear matter can be damped on timescales on the order of 10 milliseconds, so we conclude that bulk viscosity should be included in merger simulations. Finally, we study thermal transport due to axions in neutron star mergers. We conclude that axions are never trapped in mergers, but instead escape, carrying energy away from the merger. We calculate the cooling time due to the energy carried away by axions and find that within current constraints on the axion-nucleon coupling, axions could cool fluid elements in mergers on timescales which could affect the dynamics of the merger.


English (en)

Chair and Committee

Mark G. Alford

Committee Members

Greg Comer, Bhupal Dev, Wim Dickhoff, Saori Pastore,