This item is under embargo and not available online per the author's request. For access information, please visit http://libanswers.wustl.edu/faq/5640.

Title

Functional Connectivity Analysis of the Mammalian Circadian Pacemaker

Date of Award

Spring 5-15-2013

Author's School

Graduate School of Arts and Sciences

Author's Department

Biology & Biomedical Sciences (Neurosciences)

Degree Name

Doctor of Philosophy (PhD)

Degree Type

Dissertation

Abstract

Daily rhythms in mammalian physiology and behavior are mediated by a circadian pacemaker within the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is composed of approximately 20,000 neurons which maintain robust daily rhythms in clock gene expression and electrical activity. Network interactions are necessary for neurons to maintain synchronous activity and produce a coherent output. To date, our understanding of the network topology and intercellular signals which modulate periodicity and synchrony remain incomplete. We utilized multielectrode array technology to record and measure correlated spontaneous electrical activity from synchronized SCN neurons and map functional network connectivity. We find that millisecond-level interactions between neurons persist over days, but vary in strength and number over circadian time. Using pharmacologic approaches, we show that these connections are primarily mediated by GABA(A) receptor signaling and are relatively rare - indicating that low levels of connectivity are sufficient to modulate network dynamics. To determine the role of GABA(A) receptor-mediated interactions in circadian time-keeping, we monitored clock gene (PERIOD2) expression using low-light imaging technologies. We find that GABAergic network interactions decrease the temporal precision of circadian gene expression in single cells. Interestingly, we find that in desynchronized networks lacking the coupling agent vasoactive intestinal polypeptide, blockade of GABAergic signaling rescues synchrony. Together these data support a model in which sparse, millisecond-level, GABA(A) receptor-mediated interactions introduce sufficient noise into the SCN circuit to alter precision in gene expression over hours to days, and in some cases, functionally desynchronize the circadian network.

In conjunction with our work testing the role of GABAergic signaling in SCN networks, we also find that picrotoxin, a classic GABA(A) receptor antagonist, decreases the period of circadian oscillations. We demonstrate that picrotoxin acts independently of GABA(A) receptors and other Cys-loop receptors to shorten the period of the circadian clock by specifically advancing the accumulation of PERIOD2 protein. Notably, picrotoxin's circadian target is found in several mammalian cell-types, but not Drosophila, thereby ruling out all conserved Cys-loop receptors and known regulators of PERIOD protein stability. Together, these data point to the existence of an important and novel picrotoxin-sensitive target within the mammalian circadian timing system.

Language

English (en)

Chair and Committee

Erik D Herzog

Committee Members

Bruce A Carlson, Timothy E Holy, James E Huettner, Paul H Taghert, Charles F Zorumski

Comments

Permanent URL: https://doi.org/10.7936/K7FF3Q9M

This document is currently not available here.

Share

COinS