Self-Stabilization by Window Washing

Authors: Adam M. Costello and George Varghese

A useful way to design simple and robust protocols is to make them self-stabilizing. We describe a new general technique for self-stabilization called window washing. We apply this technique to generalized sliding window protocols that work on a number of topologies. This results in simple, efficient, and self-stabilizing protocols. As far as we know, both window washing and generalized sliding window protocols are new ideas. Our protocols can be used for data links, reliable broadcast, and flow control.
Self-Stabilization by Window Washing

Adam M. Costello and George Varghese

wucs-95-24

13 Dec 1995

Department of Computer Science
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899

Abstract

A useful way to design simple and robust protocols is to make them self-stabilizing. We describe a new general technique for self-stabilization called window washing. We apply this technique to generalized sliding window protocols that work on a number of topologies. This results in simple, efficient, and self-stabilizing protocols. As far as we know, both window washing and generalized sliding window protocols are new ideas. Our protocols can be used for data links, reliable broadcast, and flow control.

This work supported by a grant from the NSF.
1. Introduction

A protocol is self-stabilizing if, when started from an arbitrary global state, it exhibits “correct” behavior in bounded time. Typical protocols cope with a specified set of failure modes such as packet loss and link failures. A self-stabilizing protocol copes with a set of failures that subsumes most previous categories, and is robust against transient errors, including memory corruption and the injection of corrupt packets. Transient errors do occur in real networks and cause systems to fail unpredictably [Ros81, Per83]. Thus stabilizing protocols are more robust than traditional protocols. Furthermore, they are simpler, because they use uniform mechanisms to deal with different failures, and because they do not need special mechanisms for initialization.

In this paper we describe a self-stabilizing version of the well-known sliding window protocol. We also describe a new pipelined reliable broadcast protocol, by generalizing the sliding window protocol to work with multiple receivers. To the best of our knowledge, even the non-stabilizing version of our one-to-many sliding window protocol is new. We also show how small modifications achieve self-stabilization in the Credit Update Protocol (CUP) for flow control [KBC94], which has been implemented in Bell-Northern Research ATM switches. Underlying these practical applications is a new theoretical technique that we call window washing.

We had earlier [Var94] developed a technique called counter flushing which allowed a single leader to broadcast one message at a time to the receivers. Such stop-and-wait protocols are inefficient in networks where the propagation delay is large compared to the transmission delay. Our new window washing technique allows the sender to pipeline a window of packets, improving throughput. In its simplest form with only one receiver, this is just a sliding window protocol [Tan81]. We consider the natural generalization: a one-to-many sliding window protocol with multiple receivers, and the application of our technique to make such a protocol self-stabilizing. One-to-many sliding window protocols would be useful for reliable broadcast, for example in ATM or IP networks.

The theoretical notions underlying window washing (WW) nicely generalize the notions underlying counter flushing (CF). CF requires a space of sequence numbers that is larger than the number of messages that can be stored in the system. WW requires a space larger by a multiplicative factor equal to the degree of pipelining (the window size). Stabilization in both CF and WW is achieved by having initial garbage values flushed out of the system, replaced by values generated by a leader, during one round-trip delay, and then having the leader get “stuck” until the rest of the participants “catch up” during the second round-trip delay.

Previous Work Self-stabilizing protocols were introduced by Dijkstra [Dij74, Sch93]. There have been few general techniques for self-stabilization. Katz and Perry [KP90] showed how to compile an arbitrary asynchronous protocol into a stabilizing equivalent. Their general transformation is expensive; hence more efficient and less general techniques are useful. Tech-
niques that transform any locally checkable protocol into a stabilizing equivalent are given in [AKY90, APV91, Var93]. However, our work on WW applies to protocols that are not locally checkable.

Gouda and Multiari [GM90] describe a two-node sliding protocol using unbounded integers. Real protocols require bounded integers. Spinelli [Spi93] describes a pair of two-node self-stabilizing sliding window protocols with bounded counters. Our sliding protocol stabilizes using a completely different mechanism than Spinelli’s. More interestingly, our stabilizing mechanism is a general idea that can be applied in other contexts; for instance, we apply our mechanisms to the general case of one-to-many sliding window protocols, and to the CUP flow control protocol [KBC94]. Our protocols stabilize faster, taking at most two actual round-trip delays to stabilize, whereas Spinelli’s may take up to two worst-case round-trip delays. In some real links the difference between a typical round-trip delay and a worst-case round-trip delay can be an order of magnitude. The cost of this faster stabilization is a few bits in the packet headers—we add \(\log c_{\text{max}} \) bits (\(c_{\text{max}} \) is roughly the number of packets that fit in the links) whereas Spinelli adds only one.

The rest of the paper is organized as follows. Section 2 describes our model. Section 3 reviews counter flushing. Section 4 shows how window washing works for a two-node sliding window protocol. Section 5 describes the one-to-many stabilizing sliding window protocol. Section 6 shows how CUP, with small modifications, uses window washing to achieve self-stabilization. Section 7 states our conclusions. Appendix A details a proof of the two-node stabilizing sliding window protocol. Appendix B presents an optimization for avoiding an implosion of acks in the one-to-many case.

2. Model

We restrict ourselves to message-passing protocols for networks. The network topology is modeled by a directed graph \(G = (V, E) \). Let \(n = |V| \) denote the number of network nodes and \(D \) the network diameter. We assume that there is a distinguished leader node. (There are many stabilizing protocols to construct a leader; e.g., [Per85] calculates a leader in \(O(D) \) time.) We model the nodes and links of the network using Input/Output Automata (IOA) [LT89].

Nodes communicate with each other by sending and receiving packets to and from links. Nodes and links are modeled by state machines. For every link \((i, j) \in E\), there is an output action \(\text{Send}_{i,j}(p) \) to send a packet from node \(i \) toward node \(j \), and an input action \(\text{Receive}_{i,j}(p) \) to receive a packet\(^2\) at node \(j \) from node \(i \). Similarly, the link itself has an input action \(\text{Send}_{i,j}(p) \) to receive packets from node \(i \), and output action \(\text{Receive}_{i,j}(p) \) to deliver packets to node \(j \).

We will generally give the actions more intuitive aliases; for example, \(\text{Send}_{0,1}(p) \) and \(\text{Send}_{1,0}(p) \) might be referred to as \(\text{SendData}(seq, m) \) and \(\text{SendAck}(ack) \).

Node automata can be arbitrary except that they must have finite state sets and have the appropriate interface actions to send and receive packets. We assume that each link is a FIFO queue with initially bounded storage; that is, there may be no more than \(L_{\text{max}} \) packets on a link in the initial state. (This is a reasonable assumption because all real links are bounded.) To model link errors, a \(\text{Send}_{i,j}(p) \) action may result in no change in the queue. However, we assume that a sequence of \(\text{Send}_{i,j}(p) \) actions will eventually result in some action succeeding and storing the last packet sent at the tail of the link queue. A \(\text{Receive}_{i,j}(p) \) action is enabled whenever \(p \) is at the head of the link queue; it removes \(p \) from the queue.

\(^{1}\)The \(st/rat \) mechanism may take up to two worst-case round-trip delays to detect a bad state. In the go-back-n version of Spinelli’s protocol, \(\text{RESET}s \) are not possible; in the selective repeat version, they add a third worst-case round-trip delay plus an actual round-trip delay to the stabilization time.

\(^{2}\)The convention for action subscripts is that the first subscript always represents the sending node, and the second the receiving node.
3. Counter Flushing

As a point of departure, we review counter flushing [Dij74, Var94]. The abstract ideas are:

- Nodes periodically inform their neighbors of "where" in the execution they are.
- The leader node is always "right" by definition.\(^3\)
- Whenever a discrepancy is discovered, the leader ignores it, but a non-leader will re-sync by altering its own state.

The details are best illustrated using a token ring. Number the nodes sequentially clockwise, starting with 0 at the leader. As in a normal ring, a token is sent (clockwise) around the ring such that at most one node has the token at a time. For fault-tolerance, let each token packet carry a counter value \(c\) indicating how many times the token has circumnavigated the ring, and let every node \(i\) store the counter value \(c_i\) of the last token that arrived at the node. To guard against lost tokens, each node \(i\) periodically retransmits a token packet containing \(c_i\). Nodes must use their counters to weed out duplicate tokens. In a valid state, there are only two values in the ring: one solid band, starting with the leader and continuing part-way around the ring, contains only the value \(z\), while the rest of the ring contains only the value \(z - 1\). The token is at the end of the first band. For example, Figure 1 shows a valid state with the token in transit from node 2 to node 3.

When a non-leader node \(i\) receives a token packet from upstream, it compares the counter value in the packet \(c\) with its own counter value \(c_i\). If they are different, then the node assumes it has received the token and sets \(c_i\) equal to \(c\), but if they are equal, the node ignores the token packet. The leader, however, follows a different rule: if the counter value \(c\) in the token packet is equal to the leader’s counter value \(c_0\), then the leader assumes it has received the token and increments its counter value modulo \(M\), but if \(c\) is different from \(c_0\), then the leader ignores the token packet. For example, from the state shown in Figure 1, the value 17 will sweep around the ring as the token moves clockwise. When the token returns to the leader, the leader increments to 18 and begins a new cycle.

In the initial state, the counter values at nodes and in tokens stored on links may be arbitrary. Let \(c_{\text{max}}\) be the maximum number of counters that can be stored in the network in the initial state. (In our model, \(c_{\text{max}} = |E| l_{\text{max}} + |V|\).) If the modulus \(M\) is greater than \(c_{\text{max}}\), then the protocol stabilizes within two round-trip delays, where a round-trip delay is the time for a causal chain of packets to propagate all the way around the ring. Once the first leader-produced value has made its way all the way around the ring and is about to arrive back at the leader, the initial garbage values have all been flushed out, and only values produced by the leader are left in the ring. Since the leader could have incremented at most once for each distinct value initially in the ring, and \(M > c_{\text{max}}\), the leader’s counter value cannot appear anywhere except in a solid band starting at the leader. Therefore, the leader will not increment again until its current value has filled the ring, which takes at most one more round-trip delay, at which point the ring is in a valid state. Figure 2 shows an example stabilization scenario.

Note that a token passing protocol can be used to broadcast a data message (carried in the token packet) from the leader to the other nodes. (In the case of a two-node ring, this reduces to the famous stop-and-wait data link protocol [Tan81].) However, a message must be delivered to all re-

\(^3\)Recall that our model assumes that there is a distinguished network node that is the leader.
In the initial state, the ring is full of garbage:

![Initial Ring Diagram]

After one round-trip delay, all garbage values have been flushed out:

![Flushed Ring Diagram]

The leader remains stuck until its own value has filled the ring (at most one more round-trip delay):

![Leader Stuck Diagram]

Figure 2: Stabilization of the token ring using counter flushing.

eivers before the next message can be sent. Thus the early work on counter flushing [Var94] applied to the problem of broadcasting a single message at a time to a set of receivers. We now show how to generalize this approach to allow pipelining.

4. Window Washing

A sliding window protocol [Tan81] is a two-node protocol enabling a sender node to send a sequence of messages to a receiver node without duplication, loss, or misordering. The sender attaches a sequence number seq to each message m to form a data packet, periodically retransmitting until an acknowledgement arrives indicating that the message has been received. To allow pipelining a window of up to w messages before receiving an ack, the sender keeps a lower window edge L. The sender may send packets only with sequence numbers in the range [L+1, L+w], where w is the window size.

The receiver keeps a receive sequence number R (initially 0) that records the last sequence number it accepted. For simplicity, we consider a sliding window protocol which neither buffers out-of-order messages nor does selective reject [Tan81]. That is, the receiver accepts a packet only if seq = R + 1, at which point the receiver copies seq into R, otherwise it discards the packet. The sender periodically retransmits packets in its window, and the receiver periodically sends an ack packet containing the value ack = R. All arithmetic on sequence numbers is assumed to be modulo M, the size of the bounded integer space. Typically M is required to be greater than w [Tan81]. However, for self-stabilisation we will require a larger value. The code for this protocol is shown in Figure 3. We have not modeled the arrival of messages from users to the sender—for simplicity, we assume that the sender generates a unique message for each sequence number.

Our abstract version of a sliding window protocol does reflect real protocols. Real sliding window protocols sometimes send an ack whenever a new packet is accepted; our protocol can simulate such behaviors. Although in our protocol, it appears that the retransmissions of packets are constantly enabled, this merely ensures that the protocol works correctly regardless of timer values. Our abstract protocol must be augmented by sensible retransmission policies (especially the choice of a good retransmission timer value) to provide good performance when implemented in a real system.

It turns out that merely increasing the modulus M to exceed w,c_max will make the sliding win-
All arithmetic is modulo \(M \) where \(M > w \).

\[
\text{SendData}(seq, m) \quad (\text{Sender emits data packet.})
\]
Preconditions:
\[
\begin{align*}
\text{seq} & \in [L + 1, L + w] \\
m & \text{is the message associated with seq}
\end{align*}
\]

ReceiveData(seq, m)
\((\text{Receiver absorbs data packet.})\)
Effects:
\[
\begin{align*}
\text{if seq} & = R + 1 \text{ then} \\
R & \leftarrow \text{seq} \\
\text{deliver message m} \\
\text{endif}
\end{align*}
\]

\[
\text{SendAck}(ack) \quad (\text{Receiver emits ack.})
\]
Preconditions:
\[
\text{ack} = R
\]

ReceiveAck(ack)
\((\text{Sender absorbs ack.})\)
Effects:
\[
\begin{align*}
L & \leftarrow \text{ack}
\end{align*}
\]

Figure 3: Sliding window code.

Receiver Window Adjustment Of course, unless we make the receiver follow, a bad state could leave the system in deadlock. If \(L \) and \(R \) differ by more than \(w \), then both the sender and receiver will stubbornly ignore packets sent by the other. In correct operation, if thesender were to include a copy \(L' \) of \(L \) in each data packet, the receiver would find, whenever it received a packet, that \(R \) is in the range \([L', L' + w]\). Let the receiver, whenever it receives a packet which does not include \(R \) in that range, resync by setting \(R \) to \(seq \) from the packet. This is called the receiver window adjustment.

Now that we have the sender leading and the receiver following, we are as close to having a self-stabilizing protocol as we were to begin with. There still remains, however, the problem of the size of the modulus \(M \). If \(M \) is too small, aliasing can allow a bad state to leave the system in livelock, with the receiver continually adjusting but never catching up to the sender. For example, suppose that the data packets on the downward (sender-to-receiver) link, from newest to oldest, have \(L' \) values of \(L - w, L - 2w, \ldots \) and \(seq \) values of \(L + 1 - w, L + 1 - 2w, \ldots \). Further suppose

modulus = 20
window size = 3

\[
\begin{align*}
sender & L = 12 \\
& 15 \quad 10 \\
& 18 \\
& 7 \\
& 4 \\
& 10 \\
& R = 4
\end{align*}
\]

\[
\begin{align*}
sender & L = 15 \\
& 18 \\
& 7 \\
& 4 \\
& 13 \\
& 10 \\
& R = 7
\end{align*}
\]

Figure 4: Livelock caused by a too-small modulus. The numbers on the downward links are seq values. One execution of each action transforms the state on the left into the state on the right, which is identical except that every value has increased by the window size 3.
that the receiver number \(R \) is \(w \) less than the
oldest \(\text{seq} \) value on the downward link, and that the
\(\text{ack} \) values on the upward (receiver-to-sender)
link, from newest to oldest, are \(R - w, R - 2w, \ldots \).
Finally, suppose that \(M \) is just small enough
that the oldest \(\text{ack} \) value on the upward link
equals \(L + w \). The sender may emit a packet
with \(\text{seq} = L + 1 \), then absorb the \(\text{ack} \) with value
\(L + w \), setting \(L \) to \(L + w \). The receiver may at the
same time emit an \(\text{ack} \) with value \(R \), then absorb
the packet with \(\text{seq} = R + w \), adjusting the out-
of-range \(R \) to \(R + w \). Notice that the state now
looks just as it did at the beginning, except that
all the values have increased by \(w \). This scenario,
depicted in Figure 4, could continue indefinitely.

Minimum Modulus The livelock scenario
depends on the ability to place a sequence of
numbers on the ring spaced \(w \) apart that wrap
around the bounded integer space. As before
with counter flushing, let \(c_{\text{max}} \) be the maximum
number of counter values \((L, \text{seq}, R, \text{and} \text{ack}
values, but not \(L' \) values) that may be stored in
the links and nodes. By requiring \(M \geq w \cdot c_{\text{max}} \)
we foil the scenario described. However, the require-
ment \(M > w \cdot c_{\text{max}} \) will make the proof easier.

The three mechanisms—sender \(\text{ack} \) check,
receiver window adjustment, and minimum
modulus—are together called window washing.
The modifications to the sliding window code are
shown in Figure 5. Note that none of the new
code gets used in correct operation—it comes
into play only when the system is in a bad state.
The stabilization of the protocol is ex-
actly analogous to the stabilization of the to-
ken ring using counter flushing. Once a data
packet has traversed the downward link and an
\(\text{ack} \) has subsequently traversed the upward link
(one round-trip delay), all initial garbage val-
ues have been flushed from the system, and the
leader has advanced, but not far enough to have
wrapped all the way around the bounded integer
space. Therefore, the sender \(\text{ack} \) check will keep
the leader stuck until the rest of the system has
caught up (a second round-trip delay). A proof
of stabilization is provided in Appendix A.

\[
\text{All arithmetic is modulo } M \text{ where } M > w \cdot c_{\text{max}}.
\]

\[
\text{SendData}(L', \text{seq}, m) \quad (* \text{Sender emits data packet.} *)
\]

\[
\begin{align*}
\text{Preconditions:} & \\
L' &= L \\
\text{seq} &\in [L + 1, L + w] \\
m &\text{is the message associated with } \text{seq}
\end{align*}
\]

\[
\text{ReceiveData}(L', \text{seq}, m) \quad (* \text{Receiver absorbs data packet.} *)
\]

\[
\begin{align*}
\text{Effects:} & \\
\text{if } & \left[R \notin \left[L', L' + w \right] \text{ or } \text{seq} = R + 1 \right] \\
R &\leftarrow \text{seq} \\
deliver \text{message } m \\
\text{endif}
\end{align*}
\]

\[
\text{SendAck}(\text{ack}) \quad (* \text{Receiver emits ack.} *)
\]

\[
\begin{align*}
\text{Preconditions:} & \\
\text{ack} &= R
\end{align*}
\]

\[
\text{ReceiveAck}(\text{ack}) \quad (* \text{Sender absorbs ack.} *)
\]

\[
\begin{align*}
\text{Effects:} & \\
\text{if } & \text{ack} \in [L + 1, L + w] \\
L &\leftarrow \text{ack} \\
\text{endif}
\end{align*}
\]

Figure 5: Stabilizing sliding window code. Changes from the original code are boxed.

5. Multiple Receivers

In normal operation, the sliding window protocol
guarantees the in-order acceptance of a sequence
of packets from a single sender by a single re-
ceiver. A one-to-many sliding window protocol
would make the same guarantee for each of se-
veral receivers, all accepting the same sequence
of packets from a single sender. This problem is
particularly interesting in the context of mod-
ern networks (like ATM and the Internet) where
a sender can broadcast values to a number of
receivers. However, most current protocols\(^4\) do
not offer reliable one-to-many transmission—i.e.,
packets can be lost. Reliable multicast can sim-
plify the design of many real applications includ-

\(^4\) A few recent Internet protocols like SRM [FJM+95]
offer reliable multicast, but these protocols have not been
proven to be self-stabilizing.
ing database update and distributed simulation. The upper layer would still provide its own end-to-end reliability, but it need not trouble itself with performance optimizations, because incorrect behavior in the self-stabilizing lower layer will be extremely rare and short-lived. We now describe a stabilizing one-to-many sliding window protocol that could potentially be implemented in ATM switches and IP routers.

The trivial way to build a one-to-many sliding window protocol would be simply to run several sliding window protocols concurrently, with a separate communication path between the sender and each receiver. But to ease the load on the sender and to reduce traffic, the scheme should instead take advantage of the topology of the receivers, and allow them to relay packets from the sender to other nearby receivers.

Despite the fact that some receivers may not get packets directly from the sender, our general strategy is to have the protocol simulate the behavior of multiple two-node protocols between the sender (node 0) and each receiver i. By doing so, we can leverage off the design and proof of the two-node sliding window protocol. To abstract the notion that a receiver i gets packets from the sender indirectly through other relay nodes, we define the notions of a data tree and an ack tree, which are independent spanning trees\(^5\) of the network, both rooted at the sender. The data tree carries data packets down from the sender to the receivers, while the ack tree carries acks up from the receivers to the sender. The parent of each node i in the data tree is the node before i on the path from the sender to i; it relays packets to i from the sender. Similarly, the parent of node i in the ack tree is the node after i on the path from i to the sender; it relays acks from i towards the sender. Figure 6 shows the data and ack trees for a ring topology. If the physical topology were a tree (with the sender at the root), the data tree would contain all the leafward links, and the ack tree would contain all the rootward links. Arbitrary physical topologies are permissible.

Each receiver behaves as in the two-node protocol, except that it forwards a copy of every incoming data packet to its children in the data tree, and it handles acks slightly differently. An ack packet now contains not just one ack value, but one for each node below it in the ack tree. Each node (including the sender) stores the last ack to arrive from each of its children in the ack tree. Each receiver includes the contents of those stored acks, as well as its own R value, in each ack it sends upward.

The sender also behaves somewhat differently. Whenever an ack arrives, the sender stores it and then, if and only if every one of the ack values in each of its stored acks is in the range \([L+1, L+w]\), it advances L to the nearest of those ack values. The code for the one-to-many protocol appears in Figure 7.

It appears that we have a problem with implosion. If a node has \(n\) descendents in the ack tree, then it needs \(O(n)\) space to store the acks and \(O(n)\) bandwidth to receive them. However, it is possible to package up an arbitrarily large set of ack values into a fixed-size digest which captures just the information needed by the protocol. This leads to \(O(1)\) space and \(O(1)\) bandwidth, thus avoiding the implosion problem. The details of this optimization are presented in Appendix B.

Intuitively, each two-node protocol within the one-to-many protocol behaves exactly as before, except that its progress is held hostage by the

\(^5\)We can generalize these notions to acyclic graphs, but that would clutter the presentation.
All arithmetic is modulo M where $M > w \cdot c_{max}$.

SendData$_{ij}$(L', seq, m)

(* Sender emits data packet to datachild j. *)

Preconditions:

$L' = L$

$seq \in [L+1, L+w]$

m is the message associated with seq

ReceiveData$_{ij}$(L', seq, m)

(* Receiver i absorbs data packet from dataparent. *)

Effects:

if $R \not\in [L', L'+w]$ or $seq = R+1$ then

$R \leftarrow seq$

deliver message m

endif

for each datachild j

enqueue (L', seq, m) onto Q_j

SendAck$_{ij}$(ack)

(* Receiver i emits ack to ackparent. *)

Preconditions:

L' is the union of $\{(i, R_i)\}$ and A_j,

for each ackchild j

ReceiveAck$_{ij}$(ack)

(* Receiver i absorbs ack from ackchild j. *)

Effects:

$A_j \leftarrow ack$

ReceiveAck$_{0j}$(ack)

(* Sender absorbs ack from ackchild j. *)

Effects:

$A_j \leftarrow ack$

if for each ackchild j, for each $(i, R) \in A_j$,

$R \in [L+1, L+w]$

then

L = the earliest of all those R values

endif

Figure 7: Stabilizing one-to-many sliding window code. A datachild is a child in the data tree, an ackparent is a parent in the ack tree, etc.

progress of the slowest two-node protocol. However, this does not complicate matters significantly. Since each of the two-node protocols stabilizes independently, we can reuse most of the proof of stabilization of the two-node protocol. The liveness argument changes, since it must now involve global reasoning about all the receivers. The formal proof of stabilization for the one-to-many protocol is not included here, because it is so similar to the proof for the two-node protocol.

6. Flow Control

Let us return to the two-node stabilizing sliding window protocol. For simplicity, we have been ignoring the possibility that packet acceptance and packet delivery (up to the next higher layer) at the receiver happen at different times. In reality, there is probably a queue Q into which packets are enqueued when they are accepted, and from which they are dequeued just before they are delivered. We may wish the sliding window protocol to prevent the queue from overflowing in normal operation; that is, we may wish to add flow control to the protocol.

This is a very easy modification. Simply have the receiver, instead of sending acks with the value of R, send acks with the value $R - length(Q)$. This can be easily accommodated in the proof of stabilization, and ensures that the queue never contains more than w packets in normal operation. The receiver is therefore free to limit the size of the queue to w, and drop packets that do not fit.

In some cases, such as flow-controlled virtual circuits between ATM switches, we may be interested only in flow control, and not in reliability (higher layers may be taking care of that). We can then simplify the protocol as follows.

Receiver Window Adjustment The receiver accepts a packet if it is the expected one, or if its L' value indicates that the receiver is out of sync; otherwise the receiver rejects the packet. If we do not care about reliability at this layer, there is no need ever to reject packets—the receiver can simply always accept the packet. There is no need for packets to carry L' values.
Sender Ack Check Since we are no longer providing reliability, the sender need not retransmit packets. But we would still like packets to arrive in order in the absence of errors. Since the receiver is accepting all packets, we will have the sender send them strictly in order. We will therefore need a second counter at the sender, S, which holds the last sequence number sent. With the existing ack check in place (the sender ignores ack values outside the range $[L + 1, L + w]$), the sender may send a packet whenever $S \neq L + w$.

However, we may simplify matters by combining these two checks into one: let the sender copy any ack value into L, but let it send a packet only when $S \in [L, L + w - 1]$. While the new check is not precisely equivalent to the old checks, it serves the same purpose. The purpose of the original ack check was to prevent a garbage ack from causing a large jump in the sequence numbers coming out of the sender. With the new check, a garbage value in L will stop the sender from sending anything until a plausible ack arrives.

Minimum Modulus We have required the modulus M to be greater than $w \cdot c_{max}$ because L could jump by w for each ack received. This is still true, but now we have the additional restriction that S can jump by at most 1 for each packet sent. This allows us to tighten the bound on M by about a factor of 2. The livelock scenario analogous to the one in Figure 4 is shown in Figure 8. It is foiled if $M > w \cdot r_{max} + f_{max}$, where r_{max} is the maximum number of acks that fit in the reverse link plus one, and f_{max} is the maximum number of data packets that fit in the forward link plus one.\(^6\)

Finally, one last simplification we can make is to decouple sequence numbers from data messages. Since we care only about flow control, not reliability, we do not need to keep track of which sequence number belongs to which message—we are concerned only with how many data packets are sent, received, enqueued, etc. Therefore, not every data packet must carry a sequence number. Instead, sequence numbers may be sent occasionally in special sync packets. This is equivalent to having the receiver assume that unmarked data packets would have contained the expected sequence number, and checking this assumption whenever a sync packet arrives. The separation of data packets and sync packets is especially useful when the packets are ATM cells, which lack room for sequence numbers.

The simplified code is shown in Figure 9. It is not new—it is virtually identical to the Credit Update Protocol (CUP) [KBC94] proposed for ATM flow control and implemented in Bell-Northern Research switches. But now that we can see that it uses window washing, we know that it recovers from arbitrary faults in two round-trip delays, provided that the bounded integers use a large enough modulus. (Actually, we must also require that the queue be incapable of holding more than a limited number of packets, lest memory corruption cause the next higher layer to receive garbage packets for a long time.)

There is one major difference between CUP and the protocol of Figure 9: the latter assumes

\[M > \frac{\max \text{ round-trip delay}}{\min \text{ packet transmission time}} + w \]

which is enough to insure that, during the first round-trip delay, S will not advance too far, and will therefore be "stuck" until the receiver catches up.

\(^6\) If we do not mind talking about time, we can further relax the restriction to

\[M > \frac{\max \text{ round-trip delay}}{\min \text{ packet transmission time}} \]
All arithmetic is modulo M, where $M > w \cdot r_{\text{max}} + f_{\text{max}}$

SendData(m) (* Sender emits data packet. *)

Preconditions:
$S \in [L, L + w - 1]$

Effects:
$S \leftarrow S + 1$

SendSync(seq) (* Sender emits sync packet. *)

Preconditions:
$seq = S$

ReceiveData(m) (* Receiver absorbs data packet. *)

Effects:
$R \leftarrow R + 1$
if Q is not full then
enqueue message m onto Q
endif

ReceiveSync(seq)
(* Receiver absorbs sync packet. *)

Effects:
$R \leftarrow seq$

SendAck(ack) (* Receiver emits ack. *)

Preconditions:
$ack = R - \text{length}(Q)$

ReceiveAck(ack) (* Sender absorbs ack. *)

Effects:
$L \leftarrow ack$

Figure 9: Stabilizing sliding window code for flow-control without reliability.

and tail, the length() function is simply a subtraction of the indices modulo n. This simple scheme does not allow the capacity of the queue to vary, but more versatile implementations may be possible.

7. Conclusions

There are two main contributions of this paper. First, while a bounded integer sliding window protocol was described by Spinelli, our protocol is simpler, faster, and based on a more general mechanism than that of Spinelli. Second, we have generalized sliding window protocols to the multiple receiver case and shown that our stabilizing techniques apply to the general case. Additionally, we have provided evidence that the window washing mechanism is versatile, by applying it to the problem of flow control.

We have argued that the stabilizing protocols produced by our techniques are useful for real networks. Our sliding window protocol requires only minor changes to the usual implementation in order to make it stabilizing. The reliable broadcast protocol seems simple enough to implement even on ATM switches; recall that only the sender does retransmission, so switches do not have to buffer packets. Our goal is to bridge the gap between elegant theoretical techniques for fault-tolerance and the needs of real networks.

References

A. Stabilization Proof for the Two-Node Sliding Window

This section proves that protocol of Figure 5 stabilizes, and refers to the actions defined there. All arithmetic is modulo M, and $M > w$.

A.1. Definitions

In a given state:

- The **upward sequence** is the sequence of values starting with R and proceeding through all the in-transit ack values in the reverse link. (The author of this proof visualizes the sender as being above the receiver, hence the name of the sequence.)

- The **downward sequence** is the sequence of values starting with L and proceeding through all the L' values in the in-transit data packets in the forward link.

- The **validity sequence** is the concatenation of the upward and downward sequences, in that order.

A sequence of bounded integers is **non-increasing** if each successive value is either equal to the previous value, or does not occur in the range $[p, f]$, where p is the previous value and f is the first value. For example, $(4, 3, 3, 0, 99, 43, 6)$ is non-increasing, and so is $(4, 6)$, but $(4, 5, 6)$ is not.

Define a **valid state** as one that meets the following conditions:

1. For all data packets in transit, $seq \in [L' + 1, L' + w]$.

2. The validity sequence is non-increasing.

3. The validity sequence spans a range of at most \(w \), which is to say, every value in the sequence is in \([R - w, R]\). Equivalently, every value in the sequence is in \([L^*, L^* + w]\), where \(L^* \) is the last value in the sequence.

A.2. Safety and Liveness

Conditions 2 and 3 together imply that every value in the upward sequence is in \([L, L + w]\). Therefore, the sender ack check has no effect on a valid state.

Condition 3 implies that \(R \in [L', L' + w] \) for any data packet arriving at the receiver. Therefore, the receiver window adjustment has no effect on a valid state.

Valid states are stable. That is, any of the four actions of the protocol, applied to a valid state, produces a valid state, as shown here:

Condition 1 is obviously preserved by SendData, and unaffected by all other actions.

Conditions 2 and 3 are clearly preserved by both SendData and SendAck, because they just duplicate a value in the validity sequence. They are clearly preserved by ReceiveAck, because it just deletes a value from the sequence.

In ReceiveData, a value is deleted from the end of the sequence, which is safe. But the first value in the validity sequence, \(R \), can also change. Because the receiver window adjustment does not apply, \(R \) can change only if \(seq = R + 1 \), in which case \(R \) increments. Incrementing the first value in a non-increasing sequence can break the non-increasing property only if it causes the sequence to wrap completely around the bounded integer space. But using condition 1, we see that condition 3 is preserved, so the sequence could not possibly wrap around, so condition 2 is preserved.

Valid states may be stable, but do they deserve to be called “valid”? Yes. Notice that starting from any valid state, data packets are accepted in order, because the are accepted only when \(seq = R + 1 \), which causes \(R \) to increment. Also note that liveness is guaranteed: if \(L \) tries to get stuck, the sender will eventually send a data packet with \(L' = L \) and \(seq = L + 1 \), which will cause \(R \) to enter the range \([L + 1, L + w]\) if it was not already in that range. \(R \) cannot leave that range as long as \(L \) is stuck. The receiver will eventually send an ack in that range, which will cause \(L \) to advance. Thus, \(L \) can remain stuck for at most one round-trip delay, plus the time to transmit a window of data.

The claim of liveness above, and the time bounds on self-stabilization that will be derived below, both depend on there always being data to send. If this is not actually the case, but we still want the time bounds, we can allow the sender, whenever its message queue becomes empty, to enqueue a null message that does not affect the data stream. Artificial delays can accompany such null messages so that they do not consume too much bandwidth. Alternately, we may not care about liveness and stabilization while there is no data to send.

A.3. Self-stabilization

We need to show that an arbitrary state will reach a valid state. Call the initial state \(S_0 \).

Consider the first data packet sent. Wait until it arrives at the receiver, producing state \(S_1 \). Note that condition 1 is true in \(S_1 \), and that the code for SendData insures that it will stay true thereafter. Now wait until all acks in the reverse link in state \(S_1 \) have arrived at the sender, producing state \(S_2 \). Let \(L_0 \) and \(L_2 \) be the sender's \(L \) values in states \(S_0 \) and \(S_2 \).

How many distinct ack values could the sender have received during this time? Notice that the receiver can change its \(R \) value only when it receives a packet. The answer, therefore, is no more than one for each ack in the reverse link in state \(S_0 \), plus one for the \(R \) value in state \(S_0 \), plus one for each packet in the forward link in state \(S_0 \). Assuming that the links are bounded, call the maximum possible value of this sum \(c_{\text{max}} - 1 \). (That makes \(c_{\text{max}} \) the maximum number of data packets plus acks plus nodes in the system.)

Let us assume that the modulus \(M \) is larger than \(w \cdot c_{\text{max}} \).

Since the sender can change \(L \) only when it receives an ack, and can advance \(L \) by at most

w, L could have advanced by at most $w(c_{\text{max}} - 1)$ between states S_0 and S_2. Note that ever since state S_1, every L' value in the forward link has been in $[L_0, L_2]$, and every seq value has been in $[L_0 + 1, L_2 + w]$. Because the receiver, upon receiving a packet, must set R to seq unless R is in the range $[L', L' + w]$, we know that R has been in the range $[L_0, L_2 + w]$ ever since state S_1, which means that in state S_2, all ack values in the reverse link are in $[L_0, L_2 + w]$. Thus, in state S_2, every value in the system is in the range $[L_0, L_2 + w]$.

Because the modulus M is larger than $w \cdot c_{\text{max}}$, we can define a total ordering on the values in the range $[L_0, L_2 + w]$, with L_0 as the “zero” value, and each successive value being the next larger value.

We can now use words like “increase” and “decrease” to describe variables than stay in this range. For instance, during the time interval in question, from state S_0 to state S_2, L never decreases. So the downward sequence in state S_1 is non-increasing. In state S_1, the receiver has just received a data packet containing some L' value, which means that R must be in the range $[L', L' + w]$ (whether it accepted the packet or not—see the ReceiveData code). Because each successive packet that it receives until state S_2 contains an L' value larger than (or equal to) the previous one, R is always $\leq L'^* + w$, where L'^* is the last value in the downward sequence. Therefore, subsequent changes to R can only be increases, never decreases. Therefore, in state S_2, the upward sequence is non-increasing.

$\text{time}(S_2) - \text{time}(S_0) \leq \text{round-trip delay}$

What happens after S_2? L will remain stuck at L_2 until an ack value arrives in the range $[L_2 + 1, L_2 + w]$. So until that happens, we preserve the property that all values in the system are in the range $[L_0, L_2 + w]$, and the non-increasing property of the downward and upward sequences, and therefore we preserve the property that $R \leq L'^* + w$. Denote by S_3 the first state after S_2 (or equal to S_2) in which the smallest (i.e., oldest) ack value in the reverse link is in the range $[L_2, L_2 + w]$. This is a prerequisite for an ack in the range $[L_2 + 1, L_2 + w]$ to arrive at the sender, so we know that properties mentioned above have been preserved through state S_2. We also know that we must reach S_3. Why? Suppose we never do. Then L will remain at L_2 forever. A data packet with $L' = L_2$ will be sent. After it arrives at the receiver, R must be in the range $[L_2, L_2 + w]$. R never decreases, and stays in the range $[L_0, L_2 + w]$, so it must stay in the range $[L_2, L_2 + w]$. It will send an ack in this range, which will make its way toward the sender until all older acks have been flushed out. At this point, we have reached S_3.

$\text{time}(S_3) - \text{time}(S_2) \leq \text{round-trip delay}$

Examine S_3. The downward and upward sequences are non-increasing. The last value in the upward sequence (the smallest ack value) is $\geq L$, so condition 2 is satisfied. $R \leq L'^* + w$, so condition 3 is satisfied. Condition 1 has been satisfied since state S_1. So S_3 is a valid state. It has taken at most two round-trip delays to get there from state S_0.

B. Avoiding Implosion

At first glance, the one-to-many stabilizing sliding window protocol described in Section 5 appears to require $O(n)$ space for an ack packet, and therefore $O(n)$ bandwidth, where n is the number of receivers. It also takes $O(n)$ time for a receiver to construct an ack. However, it is possible to reduce the space and bandwidth requirements to $O(1)$, and the time requirement to $O(k)$, where k is the degree of the node.

Suppose, instead of transmitting and storing a whole set of ack values, we instead use a fixed-size digest that holds either a single pair (lo, hi), or the special value wide. A nonempty set x maps to a digest $f(x)$ as follows:

If all the ack values in x lie within a range of $MaxWidth$ consecutive values, then $f(x) = (lo, hi)$, where lo is the earliest ack value, and hi is the latest. Otherwise, $f(x) = \text{wide}$. Notice that the terms “earliest” and “latest” make sense only if $MaxWidth$ is no more than half the modulus of the bounded integers, so we require that.

$MaxWidth$ will be further constrained later.

Let $x = x_1 \cup x_2 \cup x_3 \cup \ldots \cup x_k$. $f(x)$ can be computed from $f(x_1), f(x_2), f(x_3), \ldots, f(x_k)$ as follows. If any of the $f(x_i)$ is wide, then $f(x) = \ldots = \text{wide}$. Otherwise, let $\mathsf{lo} = \min\{lo_i : \text{any} f(x_i) \neq \text{wide}\}$ and $\mathsf{hi} = \max\{hi_i : \text{any} f(x_i) \neq \text{wide}\}$. Then $f(x) = (\mathsf{lo}, \mathsf{hi})$.
wide. Otherwise, we have \(f(x_i) = (lo_i, hi_i) \). If all the \(lo_i \) and \(hi_i \) values lie within \(MaxWidth \) consecutive values, then \(f(x) = (lo, hi) \), where \(lo \) is the earliest of those values, and \(hi \) is the latest. Otherwise, \(f(x) = \text{wide} \).

If \(MaxWidth \geq w \), we can see from the definition of \(f(x) \) that the \(\text{ack} \) values in a set \(x \) are all within \([L + 1, L + w]\) if and only if \(f(x) \neq \text{wide} \), and \(f(x) = (lo, hi) \), and \(lo \) and \(hi \) are both in \([L + 1, L + w]\). Furthermore, if all the \(\text{ack} \) values are in \([L + 1, L + w]\), then the earliest of those \(\text{ack} \) values is \(lo \).

SendAck_{i}(ack)
(* Receiver \(i \) emits \(\text{ack} \) to \(\text{ackparent} \). *)

Preconditions:
if for any \(\text{ackchild} \ j \), \(A_j = \text{wide} \) then
\(\text{ack} = \text{wide} \)
else
\(T = \{ Ri, lo, hi | (lo, hi) \in A_j \text{ for any \(\text{ackchild} \ j \}) \} \)
if all members of \(T \) lie within \(w + 1 \) consecutive values
then
\(\text{ack} = \text{earliest member of} \ T, \text{latest member of} \ T \)
else
\(\text{ack} = \text{wide} \)
endif
endif

ReceiveAck_{0,j}(ack)
(* Sender absorbs \(\text{ack} \) from \(\text{ackchild} \ j \). *)

Effects:
\(A_j \leftarrow \text{ack} \)
if \(A_j \neq \text{wide} \) for each \(\text{ackchild} \ j \) then
\(T \leftarrow \{ lo, hi | (lo, hi) \in A_j \text{ for any \(\text{ackchild} \ j \}) \} \)
if all members of \(T \) are in \([L + 1, L + w]\) then
\(L \leftarrow \text{earliest member of} \ T \)
endif
endif

Figure 10: Replacement stabilizing one-to-many sliding window code using \(\text{ack} \) digests.

We have now converted all operations that the protocol actions perform on sets of \(\text{ack} \) values into corresponding operations on digests. The replacement code is shown in Figure 10.

One last note: choosing \(MaxWidth > w \) (rather than merely \(MaxWidth \geq w \) as required above) provides the unnecessary but appealing property that no wide values appear anywhere in any valid state.