MeN4OMe Supported Pd Complexes: Electronic Effects

Sungho Park

Washington University in St Louis

WUURD, the Washington University Undergraduate Research Digest, is published by the Office of Undergraduate Research once a semester each academic year. Applications for submission and Statement of Editorial Policy may be found online.

Follow this and additional works at: http://openscholarship.wustl.edu/vol8_iss1

Recommended Citation

http://openscholarship.wustl.edu/vol8_iss1/120

This publication is brought to you for free and open access by the Office of Undergraduate Research through Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu
Pd coupling reactions are among the most widely used chemical transformations in the synthesis of pharmaceuticals and bioactive compounds. Development of novel Pd catalysts can lead to new and more economical methodologies for obtaining a wide range of complex organic molecules with biomedical applications. We recently reported unprecedented mononuclear organometallic PdIII complexes with a tetradentate ligand \(N,N^{\prime}\)-di-tert-butyl-2,11-diaza[3,3](2,6)pyridinophane (tBuN4). With a smaller N-substituent, MeN4 was found to support high-valent PdIII and PdIV complexes that have recently been proposed as important intermediates for a variety of Pd-mediated catalytic reactions. A further modified version of the MeN4 ligand has been synthesized by attaching a methoxy group at the 4-carbon positions of the two pyridine ring regions. PdIII complexes were prepared with this new ligand (MeN4OMe) in order to investigate electronic effects on similar PdIII complexes.