The Edge Group Coloring Problem with Applications to Multicast Switching

Authors: Jonathan Turner

This paper introduces a natural generalization of the classical edge coloring problem in graphs that provides a useful abstraction for two well-known problems in multicast switching. We show that the problem is \(\text{\#P-hard}\) and evaluate the performance of several approximation algorithms, both analytically and experimentally. We find that for random \(\chi\)-colorable graphs, the number of colors used by the best algorithms falls within a small constant factor of \(\chi\), where the constant factor is mainly a function of the ratio of the number of outputs to inputs. When this ratio is less than 10, the best algorithms produce solutions that use fewer than \(2\chi\) colors. In addition, one of the algorithms studied finds high quality approximate solutions for any graph with high probability, where the probability of a low quality solution is a function only of the random choices made by the algorithm.

\(\ldots\) Read complete abstract on page 2.
The Edge Group Coloring Problem with Applications to Multicast Switching

Complete Abstract:

This paper introduces a natural generalization of the classical edge coloring problem in graphs that provides a useful abstraction for two well-known problems in multicast switching. We show that the problem is \textsc{NP}-hard and evaluate the performance of several approximation algorithms, both analytically and experimentally. We find that for random χ-colorable graphs, the number of colors used by the best algorithms falls within a small constant factor of χ, where the constant factor is mainly a function of the ratio of the number of outputs to inputs. When this ratio is less than 10, the best algorithms produces solutions that use fewer than 2χ colors. In addition, one of the algorithms studied finds high quality approximate solutions for any graph with high probability, where the probability of a low quality solution is a function only of the random choices made by the algorithm.
The Edge Group Coloring Problem with Applications to Multicast Switching

Jonathan Turner

WUCSE-2015-02

Abstract

This paper introduces a natural generalization of the classical edge coloring problem in graphs that provides a useful abstraction for two well-known problems in multicast switching. We show that the problem is \(NP\)-hard and evaluate the performance of several approximation algorithms, both analytically and experimentally. We find that for random \(\chi\)-colorable graphs, the number of colors used by the best algorithms falls within a small constant factor of \(\chi\), where the constant factor is mainly a function of the ratio of the number of outputs to inputs. When this ratio is less than 10, the best algorithms produces solutions that use fewer than \(2\chi\) colors. In addition, one of the algorithms studied finds high quality approximate solutions for any graph with high probability, where the probability of a low quality solution is a function only of the random choices made by the algorithm.

An instance of the edge group coloring problem is an undirected graph \(G = (V, E)\) and a partition of its edges into groups \(\{g_1, \ldots, g_k\}\), where the edges forming each group all share a common endpoint. A coloring is a function \(c\), from the edges to the positive integers, which assigns different values to pairs of edges that share a common endpoint and belong to different edge groups. The objective of the problem is to find a coloring that uses the smallest possible number of distinct colors. An example is shown in Figure 1; here, the arcs joining selected edges define the groups (so for example, one
Figure 1: Example of edge group coloring

group consists of the edges \{b, e\}, \{c, e\} and \{d, e\}). The integers on the
group is bipartite, with the vertices divided between inputs and outputs,
and all groups are “centered” at an input. An example of such a graph
appears in Figure 2. This version of edge group coloring can be applied to a

Figure 2: Restricted version of edge group coloring problem

version of the multicast packet scheduling problem in crossbar switches [5].
In this application, each edge-group represents a multicast packet, with each
group including an edge for each output that is to receive a copy. The colors
assigned to edges correspond to time-slots during which copies of multicast
packets are transferred to outputs. Copies of a multicast packets can be
transferred to multiple outputs at the same time, but there is no requirement that all copies be transferred at the same time. This corresponds to the edge coloring rule that allows edges in the same group to share a color.

The problem can also be applied to routing multicast connections in a three stage Clos network [2], and indeed the multicast routing problem has been studied extensively. This paper draws directly on two papers in the multicast routing literature. The paper by Yang and Masson [6] includes a multicast routing algorithm that can be adapted to the edge-coloring problem and provides the best worst-case approximation bound that is currently known for edge-group coloring. Kirkpatrick, Klawe and Pippenger [4] formulate the problem of routing connections in a Clos network as a hypergraph coloring problem and give bounds on the number of colors required. Our formulation of the problem is equivalent to theirs, but is expressed in somewhat simpler language.

We start by showing that the edge-group coloring problem is NP-complete and give a simple approximation method that can be refined into several specific algorithms. These are evaluated experimentally on random k-colorable graphs. In section 4, we re-visit Yang and Masson’s algorithm in the context of the edge-group coloring problem, provide a simplified analysis of its worst-case performance and evaluate its performance experimentally. In section 5, we discuss an algorithmic approach that is implicit in the proof of the main theorem of [4]. We give an explicit statement of this approach and consider two specific algorithms based on it. We show that one of these can be viewed as a randomized approximation algorithm with a performance ratio that is somewhat better than the one in [6].

1 Preliminaries

For the bipartite version of the problem studied here, we find it convenient to represent edges as ordered pairs (u, v) where u is an input and v is an output. For any vertex u, let $\delta(u)$ denote the number of edges incident to u (the vertex degree) and let $d(u)$ denote the number of distinct groups with an edge incident to u (the group count). In general, $d(u) \leq \delta(u)$ and for the restricted graphs considered here, $d(v) = \delta(v)$ for outputs v. We also let
\(\Delta = \max_u \delta(u) \) and \(D = \max_u d(u) \). In addition, we let \(\Delta_o \) be the largest vertex degree among the outputs, and \(D_i \) be the maximum group count among the inputs.

By Vizing’s theorem [1] for the ordinary edge coloring problem, we can color any bipartite graph with \(\Delta \) colors. For edge group coloring we can often do much better than this. Indeed, it’s tempting to think that we might be able to color any simple bipartite graph with \(D \) colors. Unfortunately, this is not true, as the example in Figure 3 demonstrates. In this figure, the shaded vertices are the outputs. Note that \(D = 2 \), but this graph requires three colors. We’ll show in the next section that \(D_i \Delta_o \) colors are always enough, and we note that in [4], the authors show that there are graphs that require more than \((D_i - 1)\Delta_o \) colors.

The edge group coloring problem can be shown to be \(NP \)-complete using a reduction from the vertex coloring problem in graphs. An instance of the vertex coloring problem is a graph \(G = (V, E) \) and an integer \(k \). The objective is to determine if the vertices of \(G \) can be colored with at most \(k \) colors, with no two adjacent vertices having the same color.

Given an instance of the vertex coloring problem, we can create a corresponding instance of the edge group coloring problem that can be colored with \(k \) colors if and only if the vertices of the original graph can be colored with \(k \) colors. To construct the edge group coloring instance, we start with the original graph and insert a new vertex in the middle of each of its edges. These new vertices are outputs in the edge group coloring instance, while the original vertices are inputs. For each input \(u \), all the edges incident to

\[\begin{figure}
\centering
\begin{tikzpicture}
\node (a) at (0,0) {a};
\node (b) at (2,-2) {b};
\node (c) at (-2,-2) {c};
\node (d) at (1,1) {d};
\node (e) at (-1,1) {e};
\node (f) at (0,-2) {f};
\node (x) at (1,0) {x};
\node (z) at (-1,0) {z};

\draw (a) -- (b);
\draw (a) -- (c);
\draw (a) -- (d);
\draw (a) -- (e);
\draw (a) -- (f);
\draw (x) -- (z);
\draw (x) -- (b);
\draw (x) -- (c);
\draw (z) -- (b);
\draw (z) -- (c);
\end{tikzpicture}
\caption{D colors are not always enough}
\end{figure}\]
u (so far) form a single edge group. To complete the construction, we add $k - 1$ outputs for each of the inputs. Each of these outputs is connected to its input by an edge. We refer to these edges as stubs. Each stub belongs to a singleton group. An example of this reduction is shown in Figure 4.

![Figure 4: Reduction from graph coloring to edge group coloring](image)

Note that in any valid edge group coloring, the stubs consume $k - 1$ colors, leaving one color for the remaining group (corresponding to the edges in the original graph). This means that there is a direct correspondence between proper k colorings of the original graph and edge-group colorings of the constructed graph. This allows us to conclude that the edge group coloring problem is NP-complete. Moreover, this is true even for fixed values of k as small as 3.

2 A simple approximation algorithm

We start with a simple observation. Consider a graph in which each input has a single group. Such a graph can be colored with Δ_o colors, since we can independently assign colors to the edges incident to each output. This leads to the following general method for coloring the edge groups. Repeat the following phase until all edges have been colored.
Select a set of edge groups (from among those not previously selected), with one group centered at each input (omitting inputs whose edge groups have all been previously selected); let \(t \) be the maximum number of edges incident to any single output in the subgraph induced by the edges in the selected groups; color all the selected edges using \(t \) previously unused colors.

We call the groups selected in each phase a layer and the general method is called the layering method. The thickness of a layer is the maximum number of edges incident to any output in the subgraph defined by the layer. Since the layer thickness cannot exceed \(\Delta_o \), the number of colors used for a layer is at most \(\Delta_o \). Since the number of phases is \(D_i \), the number of colors used is at most \(D_i \Delta_o \). Moreover, since any valid coloring requires \(\max\{D_i, \Delta_o\} \) colors, this method produces solutions that use at most \(\min\{D_i, \Delta_o\} \) times as many colors as an optimal solution.

In the next section, we’ll consider ways to refine the basic layering method, but in the remainder of this section we evaluate its performance experimentally, using a simple random graph model. The model uses five parameters: the number of inputs, \(n_i \); the number of outputs, \(n_o \); an upper bound on the group count at the inputs, \(D_i \); the vertex degree of the outputs, \(\Delta_o \); and an upper bound on the number of colors needed to color the edges, \(\chi \). The generated graphs have input degree \(\Delta_i = \Delta_o n_o / n_i \) (we require this quantity to be an integer). The color bound \(\chi \) must be at least \(\max\{D_i, \Delta_o\} \). The generation process consists of three steps.

- Select a graph uniformly from among the bipartite graphs with the specified number of inputs and outputs, and the specified input and output degrees.
- At each output, randomly assign distinct colors in \(\{1, \ldots, \chi\} \) to its incident edges.
- At each input, form groups from the edges that share the same color, then for each input with more than \(D_i \) groups, randomly merge groups until the number of groups is \(D_i \).
The coloring used to generate the group graph is discarded once the generation process is complete. The minimum number of colors required for these graphs falls in the range $[\max\{D_i, \Delta_o\}, \chi]$. An example of a group graph generated using this method is shown below.

\begin{verbatim}
[a: (f i l) (g k) (e)]
[b: (i l) (h j) (g k)]
[c: (f h j) (e) (g h)]
[d: (f i) (e j) (k l)]
\end{verbatim}

Each line in this representation shows the neighbors of an input, with the parentheses identifying the groups. So for example, input a has three groups, the first consisting of the edges (a, f), (a, i) and (a, l). This graph was constructed using $\chi = 4$ and a 4-coloring appears below.

\begin{verbatim}
1: a(f i.) b(h j) c(e) d(k l)
2: a(g k) b(i l) c(h j.) d(f.)
3: a(l.) b(g.) c(f.) d(e j)
4: a(e) b(k.) c(g h) d(i.)
\end{verbatim}

Here, each line identifies the edges assigned a particular color, with parentheses again used to identify groups or partial groups (which are indicated using a period). So for example, the first two edges in a’s first group are assigned color 1, while the remaining edge is assigned color 3. The coloring obtained by the basic layering method for this graph uses seven colors and is shown below.

\begin{verbatim}
1: a(f i l) c(h j.)
2: b(i l) c(f.)
3: d(f i)
4: a(g k) b(h j) c(e)
5: d(e j)
6: a(e) b(g k) c(h.) d(l.)
7: c(g.) d(k.)
\end{verbatim}

The first layer selected by the algorithm includes the first group at each input and has a thickness of 3. Hence, the first three colors are used to color its
edges. The next layer is colored with the next two colors and the third layer with the last two.

Our first experiment explores the effect of input/output asymmetry \(\frac{n_o}{n_i} \) on the performance of the basic layering method. For this experiment, we use dense graphs, where the number of edges \(m = n_in_o/2 \). The bound on the number of groups per input is equal to the output degree \(D_i = \Delta_o \) and the color bound is slightly larger than the output degree \(\chi = 1.1\Delta_o \). The chart in Figure 5 shows the ratio of the number of colors used to \(\Delta_o \).

The curve shows the average of ten trials on different random group graphs. The error bars show the minimum and maximum values from these ten trials. We observe that the number of colors increases initially as the graph becomes asymmetric, but then the rate of increase tapers off. For the most asymmetric graphs, the number of colors used is just under six times the lower bound, \(\Delta_o \). (The upper bound on the number of colors is \(50\Delta_o \) in this case.)

Our next experiment examines how the performance varies as a function of the ratio of \(D_i \) to \(\Delta_o \), which we refer to as the skew. The results are...
shown in Figure 6. Observe that the performance ratio is highest (worst) when \(D_i = \Delta_o \). In general, we can expect better performance (relative to the lower bound) when \(D_i \) and \(\Delta_o \) differ substantially.

In our next experiment, we examine how the performance varies with the density of the graph. In Figure 7 we hold the number of vertices fixed, while increasing the degree of the inputs and outputs. Observe that there is a modest increase in the performance ratio as \(\Delta_o \) increases from 5 to 40, but after that, it remains roughly constant. Since the number of phases of the algorithm increases directly with the graph density, the performance ratio is just a reflection of the layer thickness, which is only weakly dependent on density.

Our final experiment for the basic layer method examines the impact of the color bound \(\chi \). One might expect that increasing \(\chi \) would also increase the number of colors required, and the number used by the algorithm. Figure 8 shows that, there is no clear relationship between \(\chi \) and the number of colors used by the algorithm. On reflection, this is not surprising. Recall that the number of iterations is \(D_i \) and the number of colors used is \(D_i \) times
4. The average layer thickness. Neither D_i, nor the layer thickness is directly affected by the choice of χ, so neither is the performance of the algorithm. (Note that the error bars in this chart are exaggerated by the limited scale of the y-axis.)

The overall conclusion is that the performance of the basic layering method is primarily a function of the layer thickness, which is most strongly influenced by input/output asymmetry, although even in that case the dependence tapers off as asymmetry grows beyond 5. We also observe that group graphs with $D_i = \Delta_o$ require the largest number of colors.

3 Refining the layering method

In this section we introduce several refinements to the basic layering method and observe how they affect its performance. Our first refinement is called the thin layers method, since it seeks to select the groups that form each layer with the objective of minimizing the overall layer thickness. More precisely,
the thin layers method forms each layer by repeating the following step at each input u.

Select the group at u that yields the smallest thickness value when added to the layer formed by the groups that have been selected so far.

Once the groups forming a layer have been selected, they are colored using t new colors, where t is the thickness of the new layer. When applied to the example graph from the last section, the thin layers method produces the coloring using six colors shown below.

1: $a(l \ f \ i) \ b(j \ h) \ c(e)$
2: $d(i \ f)$
3: $a(k \ g) \ b(l \ i) \ c(j \ f \ h)$
4: $d(j \ e)$
5: $a(e) \ b(k \ g) \ c(h.) \ d(l.)$
6: $c(g.) \ d(k.)$
Here, each of the three layers has a thickness of 2.

Before describing our next algorithm, we need a definition. Given a partial coloring of a graph, a color \(c \) and an uncolored edge \(e = (u, v) \), we say that \(c \) is viable for \(e \) at \(u \) if \(c \) is not being used by any other edge at \(u \) that is in a different group than \(e \); \(c \) is viable for \(e \) at \(v \) if it is not being used by any other edge at \(v \). We say that \(c \) is viable for \(e \) if it is viable at both endpoints.

Our next method extends the thin layers method by relaxing the requirement that each layer use a distinct set of colors. The min color method colors each selected group using colors allocated for previous layers whenever possible. In particular, when coloring a group, each of its edges \(e \) is colored according to the first of the three cases listed below, that is applicable.

1. If there is a color \(c \) that is viable for \(e \) and has already been used by some edge in \(e \)'s group, color \(e \) using the smallest such color (that is, the color with the smallest index).

2. If there is a color \(c \) that is viable for \(e \) and has already been used by any edge, color \(e \) using the smallest such color.

3. If there is no previously used color that is viable for \(e \), allocate the next unused color and use it to color \(e \).

Colors are allocated in increasing order of their positive integer index. When applied to the example graph from the last section, the min color method produces the coloring using five colors shown below.

1: a(f i l) b(h j) c(e) d(k.)
2: a(g k) b(l.) c(h j.) d(f i)
3: b(i.) c(f.) d(e j)
4: a(e) b(g k) c(h.) d(l.)
5: c(g.)

Here, the first and second layers each require two new colors, but the third layer is colored using just one additional color.

Our last refinement to the basic layers method is inspired by the classical proof of Vizing’s theorem for the standard edge coloring problem. The proof
describes an algorithm that uses *augmenting paths* to find a coloring. That method cannot be used directly for the edge group coloring problem, but we can adapt it to accommodate edge groups.

Let $e = (u, v)$ be an edge to be colored and let i and j be two edge colors where i is viable for e at u, j is viable at v, but neither is viable at both endpoints. An *augmenting path* is a path p that starts at v, ends at a vertex w, has edges that alternate in color between i and j (starting with i) and that satisfies the following conditions.

- The two path edges incident to any intermediate vertex x belong to different groups.
- No non-path edge incident to an intermediate vertex x has color i or j.
- If colors i and j are both in use at w, the edges with those colors are all in the same group.

Observe that if p is an augmenting path, we can reverse the colors of the edges on p and still have a valid coloring. Performing this color reversal makes color i viable for e. Figure 9 shows an example of a graph with two augmenting paths, a 1-2 augmenting path from v to b and a 3-4-augmenting path from v to e.

![Figure 9: Example of augmenting paths](image-url)
Note that when attempting to construct an augmenting path, we may arrive at a vertex that does not satisfy either the conditions for an intermediate vertex \(x \), or the conditions for the terminal vertex \(w \). In this case, there is no \(ij \)-augmenting path for \(e \) and the attempted path construction fails.

The recolor method is a modification of the min color method. In particular, when coloring edge \(e = (u,v) \), it replaces the third case in the min color method with the following.

If there is no previously used color that is viable for \(e \), color \(e \) using the first applicable sub-case listed below (this may involve testing multiple color pairs).

- If color \(i \) is used by some other edge in \(e \)'s edge group at \(u \), color \(j \) is a previously used color that is unused at \(v \) and there is an \(ij \)-augmenting path from \(v \), reverse the colors of the edges on the path and color \(e \) using \(i \).
- If color \(i \) is a previously used color that is unused at \(u \), color \(j \) is a previously used color that is unused at \(v \) and there is an \(ij \)-augmenting path from \(v \), reverse the colors of the edges on the path and color \(e \) using \(i \).
- If neither of the previous sub-cases apply for any pair of previously used colors, allocate the next unused color and use it to color \(e \).

Observe that in the example in Figure 9, the recolor algorithm will choose the 1-2 augmenting path in preference to the 3-4 path.

Next, we examine the performance of our refinements to the basic layering method. Figure 10 shows how the performance varies with asymmetry (we have omitted the error bars for clarity). Observe that for the most asymmetric graphs, the thin layers method brings the performance ratio down from about 5.8 to about 3.3. The min color and recolor methods bring it down to about 2.2. The recolor method provides only a very small improvement over the min color method (a dashed line style is used for recolor to make the small difference more apparent). Finally note that for asymmetries smaller than 10, the min color and recoloring methods produce solutions that are within a factor of two of optimal.
Figure 10: Effect on input/output asymmetry on the layering algorithms

Figure 11 shows how the performance varies with skew. In all cases, we see a peak when $D_i = \Delta_o$, although the height of the peaks is smaller for the more complex variations. Figure 12 shows how the performance ratio is affected by the graph density. Here, we observe that for the algorithms introduced in this section, the average number of colors used per layer decreases (by small amounts) as the density increases. There appear to be two factors accounting for this. First, as density increases, we have more groups per input, which provides a wider range of available choices when forming the layers. This leads to thinner layers, particularly in the early phases. The second factor that plays a role arises only in the min color and recolor methods. Because dense graphs require more colors, they offer a wider range of color choices that the algorithms can exploit when coloring the individual edges.
4 Re-visiting an algorithm by Yang and Masson

In [6], Yang and Masson describe an algorithm for routing a single multicast connection in a three stage Clos network. They show that a suitably configured Clos network is wide-sense nonblocking for new multicast connections, if their algorithm is used. Here, we adapt their algorithm for the edge-group coloring problem. The algorithm has a parameter k that limits the number of colors used for any single edge group (we’ll discuss the choice of k later). We say that a color is eligible for selection at some stage, if its index is $\leq \max\{D_i, \Delta_o\}$ or it has already been used at least once (possibly in an earlier step). The algorithm attempts to color each edge group with at most k colors, by selecting colors using a greedy strategy.

While some edge in the group remains uncolored, select an eligible color c that is viable for the largest number of uncolored edges remaining in the group; use c to color all edges in the group for which it is viable.
If this procedure fails to color all edges in a group using \(\leq k \) colors, we allocate a new color and use it to color all edges of the group, instead.

We refer to this as the \textit{few colors} method. When applied to the graph

\[
\begin{align*}
[a: & (f \ i \ l) \ (g \ k) \ (e)] \\
[b: & (i \ l) \ (h \ j) \ (g \ k)] \\
[c: & (f \ h \ j) \ (e) \ (g \ h)] \\
[d: & (f \ i) \ (e \ j) \ (k \ l)]
\end{align*}
\]

the few colors method produces the 5-coloring shown below, when \(k = 2 \), assuming that the edge groups are colored in the order in which they appear in the graph.

1: \(a(f \ i \ l) \ b(h \ j) \ c(e) \ d(k.) \)
2: \(a(g \ k) \ b(i \ l) \ c(f \ h \ j) \)
3: \(a(e) \ b(g \ k) \ d(f \ i) \)
4: \(c(g \ h) \ d(e \ j) \)
5: \(d(l.) \)
The number of colors used by the few colors method is bounded in the following theorem, which is an adaptation of a theorem in [6].

Theorem 1 Let $G = (V, E)$ be a bipartite graph in which the edges incident to each input are divided into edge groups to produce an instance of the edge group coloring problem. The few colors algorithm with parameter k colors the edges of G using at most

$$(D_i - 1)k + (\Delta_o - 1)n_o^{1/k} + 1$$

colors.

We give a simplified proof of the theorem, based on a lemma that bounds the number of colors used by a greedy algorithm for the set covering problem, when applied to instances that satisfy a special condition. An instance of the set covering problem consists of a base set A and a collection of subsets S_i of A. The objective is to find a smallest possible collection of subsets whose union includes all elements of A. The greedy algorithm for the set covering problem repeatedly selects a subset that covers the largest possible number of previously uncovered elements. It terminates as soon as all elements are included in at least one of the selected subsets.

Lemma 1 Let $A = \{a_1, \ldots, a_t\}$ and $S = \{S_1, \ldots, S_p\}$ be an instance of the set covering problem in which every a_i appears in at least $p - q$ subsets for some integer q. If integer k satisfies $p > qt^{1/k}$ then the greedy algorithm finds a covering of A using at most k subsets.

proof. Let h be the number of subsets in the greedy solution and assume the subsets are numbered so that for $1 \leq i \leq h$, S_i is the subset chosen in step i. Define $U_i = S_1 \cup \ldots \cup S_i$ and let $D_i = S_i - U_{i-1}$, $s_i = |S_i|$, $u_i = |U_i|$, $d_i = |D_i|$. Then,

$$ps_1 \geq \sum_{i=1}^{p} s_i \geq (p - q)t$$

So, $u_1 = s_1 \geq (1 - q/p)t = (1 - x_0)t$, where $x_j = (q - j)/(p - j)$. Next, note that

$$(p - 1)d_2 \geq \sum_{i=2}^{p} |S_i - U_1| \geq (p - q)(t - u_1)$$
So, \(d_2 \geq (1 - x_1)(t - u_1) \) and
\[
u_2 = u_1 + d_2 \geq (1 - x_1)t + x_1u_1 \geq (1 - x_1)t + x_1(1 - x_0)t = (1 - x_1x_0)t\]
Extending this reasoning using induction, we find that for \(i \leq h \), \(u_i \geq (1 - x_{i-1} \cdots x_1x_0)t \). In particular
\[
u_k \geq (1 - x_k-1 \cdots x_1x_0)t \geq (1 - x_0^k)t > (1 - 1/t)t = t - 1\]
So, \(U_k \) has more than \(t - 1 \) elements and since \(|A| = t \), \(|U_k| = t \). □

Now, let’s proceed to the proof of the theorem. We view each step of the few colors method as a set covering problem, in which the base set is the set of edges in the current edge group. There is a subset for each color that is not already being used by an edge incident to the group’s input \(u \), and for each such color \(c \), its subset consists of those edges \((u, v)\) for which \(c \) is not being used by any edge incident to \(v \). Let \(t \) be the number of edges in the group and let \(p \) be the number of subsets.

Now, let \(C \) be the number of colors that have been used so far. We claim that if \(C > (D_i-1)k + (\Delta - 1)n_o^{1/k} \), the group can be colored with \(\leq k \) colors, without any further increase in \(C \). So, assume \(C > (D_i-1)k + (\Delta - 1)n_o^{1/k} \) at the start of the step. Let \(u \) be the group’s input and note that the number of colors already in use at \(u \) is \(\leq (D_i - 1)k \). Hence, the number of colors that are available to color the group is \(\geq C - (D_i - 1)k > (\Delta - 1)n_o^{1/k} \). That is \(p > (\Delta - 1)n_o^{1/k} \).

Next, consider any edge \((u, v)\) in the group. At most \(\Delta - 1 \) colors are already being used at \(v \). Consequently, \((u, v)\) is a member of at least \(p - (\Delta - 1) \) subsets. Letting \(q = (\Delta - 1) \), we have \(p > qn_o^{1/k} \) and since \(t \leq n_o \), \(p > qt^{1/k} \). The lemma then implies that the group can be colored using at most \(k \) colors. □

We may choose the value of \(k \) that minimizes the bound in the theorem. When \(D_i = \Delta \), the best choice of \(k \) is the smallest integer for which
\[
n_o^{1/k} - n_o^{1/k+1} \leq 1\]
The required value is approximately \(2 \ln n_o / \ln \ln n_o \), as shown by Yang and Masson. This also leads to a worst-case performance ratio of approximately
\[(2 \ln n_o / \ln \ln n_o) + (\ln n_o)^{1/2}\]. For all but the sparsest graphs, this is better than the trivial ratio for the layering method.

Note that the performance ratio is independent of the order in which the edge groups are selected. We find that coloring the groups in decreasing order of their size gives better performance than other simple ordering strategies. This approach allows the largest groups to be colored with fewer colors, leaving more colors available for groups that come later. We can also refine the method in another way. Instead of using a fixed parameter \(k\), we can allow the number of colors per group to vary with the number of groups at an input. Specifically, we allow a group centered at an input \(u\) to use up to

\[
\left\lfloor \frac{\text{(the number of eligible colors at } u)}{d(u)} \right\rfloor
\]

colors. Recall that the number of eligible colors is initially \(\max\{D_i, \Delta_o\}\) and it increases by one whenever a previously unused color is used. We evaluate this version of the few colors method experimentally at the end of the next section.

5 Using matchings to color group graphs

In [4], the authors give several results that can be interpreted as bounds on the number of colors needed to color a group graph. Their main result is that the number of colors required for any graph is at most

\[
(D_i - 1)\lceil \log_2 (2n_o) \rceil + 2\Delta_o
\]

For most parameter choices, this is not quite as strong as Yang and Masson’s result, but the method used to prove it leads to an interesting and distinctly different algorithmic method. In this section, we describe this general method and evaluate two specific algorithms based on it. The method divides the coloring process into two parts. First, at each input, we divide the available colors among the groups at that input. The colors assigned to a given group are referred to as its menu. Next, we color the edges incident to each output using colors selected from the menus of the groups that the edges belong to. We can illustrate this procedure for the example graph.
Suppose we are attempting to color this using four colors. In the first step, we create menus for each group.

\[
\begin{align*}
[a]: (f, i, 1) & \quad (g, k) \quad (e) \\
[b]: (i, 1) & \quad (h, j) \quad (g, k) \\
[c]: (f, h, j) & \quad (e) \quad (g, h) \\
[d]: (f, i) & \quad (e, j) \quad (k, l)
\end{align*}
\]

The menus are shown within the square brackets, so for example the menu of the group \(a\) contains colors 1 and 2. In the next step, we attempt to color the edges at each output using the colors in the menus associated with its edge groups. For example, output \(e\) has three edges \((a, e), (c, e), (d, e)\) whose groups have menus \([4], [3], [2, 3]\); so, they can be colored using colors 4, 3 and 2. Similarly, the edges incident to output \(f\) can be colored using colors 1, 2 and 4. When we get to output \(g\), we find that the groups for its three edges have menus \([3], [3, 4], [4]\). Since these menus give us only two colors to choose from, we cannot color all three edges, given these menus. This raises the question of how we can best select the menus in the first place. We’ll explore two different ways to answer this question and the algorithms based on those answers. First however, let’s consider how to color the edges once the menus have been chosen. This involves finding a matching in a graph.

For each output \(v\), define \(M(v)\) to be the menu graph of \(v\). \(M(v)\) has an input for each group with an edge incident to \(v\) and an output for every color. It includes edges joining each input to the outputs corresponding to colors in the group’s menu. So in the earlier example, \(M(j)\) has the menu graph in Figure 13. A matching that includes an edge incident to every input of \(M(v)\) defines a valid coloring of the edges incident to \(v\). We call such a matching complete. So given an assignment of colors to menus, we can color all the edges of the graph if we can find complete matchings for all the menu
graphs. If any menu graph does not have a complete matching, then there is no valid coloring using the given menus.

We start by considering random menus. Here, we assign k colors to each group, for some integer k. We can show that for large enough values of k, this approach succeeds with high probability. By Hall’s Theorem [1], a random menu graph with k edges incident to each input has a complete matching if and only if, for every non-empty set X of the inputs, the set of neighbors of X is at least as large as X. For large enough k, the probability that a random menu graph contains a set of inputs X for which the set of neighbors is smaller than X is small. The required analysis is a variation on well-known results for expander graphs [3].

Theorem 2 Let G be a group graph and let $C = k \max(D_i, \Delta_0)$, where $k \geq 2 \left(\ln 2\Delta_0 n_0 / \ln \ln 2\Delta_0 n_0\right)^{1/2}$. A set of random menus using C colors and k colors per group defines a set of menu graphs that all contain a complete matching with probability $\geq 1/2$.

proof. Consider the menu graph $M(v)$ for some vertex v. Let X be a subset of the inputs of $M(v)$ and Y be a subset of its outputs. Let $N_{X,Y}$ be the event that all of X’s neighbors are in Y. Then

$$\Pr\{N_{X,Y}\} = \left(|Y|/C\right)^{k|X|}$$

Figure 13: Menu graph for output j
The probability that there exists a pair of such subsets \(X, Y \) where \(|Y| < |X| \) is

\[
\leq \sum_{i=k+1}^{\delta(v)} \left(\frac{\delta(v)}{i} \right) \left(C \right) \left(\frac{i-1}{C} \right)^{ik} \leq \sum_{i=k+1}^{\Delta_o} \left(\frac{\Delta_o}{i} \right) \left(C \right) \left(\frac{i}{C} \right)^{ik} \\
\leq \sum_{i=k+1}^{\Delta_o} \left(\frac{e \Delta_o \, e}{i} \, \frac{i^k}{C^k} \right)^i \\
\leq \sum_{i=k+1}^{\Delta_o} \left(\frac{e^2 \Delta_o \, e^{k-2}}{C^{k-1}} \right)^i \\
\leq \Delta_o \left(\frac{e^2 \left(\frac{\Delta_o}{C} \right)^{k-1}}{k^1} \right)^{k+1} \\
\leq \Delta_o \left(e^{2/k^{k-1}} \right)^{k+1}
\]

The right side of this last expression is \(\leq 1/2n_o \) if \(k \) satisfies the condition in the theorem. Since the number of menu graphs is \(n_o \), the probability that the random menu method fails to find full matchings for all menu graphs is \(\leq 1/2 \). \(\square \)

The random menu method selects random menus repeatedly until it finds a set for which the menu graphs all have complete matchings. If \(k \) satisfies the bound in the theorem, we can expect to succeed after a small number of attempts. In our experimental implementation of the random menu method, we allow inputs with \(< D_i \) groups to have more colors per group. In particular, at each input, we assign colors to groups in a round-robin fashion, starting with the largest group (consequently, larger groups may get one more color than the smallest groups). For the most asymmetric graphs used in our experiments, the bound in the theorem requires \(k \geq 5 \). We find that for random graphs, 2 or 3 colors per group is generally sufficient.

We can also construct menus in a more systematic way. For each output, we maintain a menu graph and a maximum matching on that graph. We define the deficit of a group \(g \), to be the number of menu graphs in which there is a vertex for \(g \) which is not currently matched. We define the gain...
of a color c not in g's menu, to be the number of menu graphs in which the vertices for g and c are both unmatched. The gain is a lower bound on the reduction in g’s deficit that will result if c is added to its menu.

The greedy menu method repeatedly performs the following step, until all groups have a zero deficit.

Select a group g with a positive deficit. Let u be the input on which g is centered and let $k_g = \lceil (\text{number of eligible colors})/d(u) \rceil$. While g has a positive deficit, its menu has fewer than k_g colors, and some previously used color has positive gain for g, select one such color and add it to g’s menu; update all menu graphs containing a vertex for g and update their maximum matchings. If g still has a positive deficit, allocate a previously unused color, remove all colors currently in g’s menu, add the new color and update all menu graphs containing a vertex for g and their maximum matchings.

We select groups in decreasing order of their size and we select colors that yield the largest gain for the group.

Observe that this method is operates similarly to the few colors method discussed in the previous section. The key difference is that while colors are assigned to a group’s menu, they are not rigidly assigned to the group’s edges, allowing a little more flexibility in the choice of the final edge colors.

Figure 14 shows how the two menu-based methods compare to the recolor and few colors methods. We observe that the greedy menu method has the best performance overall, although the few colors method is very close for smaller asymmetries. For random menus, the performance ratio increases very slowly for asymmetries of two or more. Indeed, for larger asymmetries than are shown on the chart, it out-performs both the recolor and few colors methods. Specifically, when the asymmetry is 100, the performance ratio for the recolor method is 2.82, for the few colors method it is 2.72, for the random menu method it is 2.44 and for the greedy menu method it is 2.1.

Figure 15 shows how the performance ratio varies with skew. For the most part, these results are consisent with what we have seen before. However, the behavior of the random menu method does seem a little unusual. Its superior performance at small values of skew may reflect the fact that
the random menu method assigns roughly the same number of colors to all groups, providing lots of flexibility when coloring edges, especially when D_i is small. In contrast, the greedy menu method assigns just one or two colors to some groups, in order to leave more available for groups that require greater flexibility. This is advantageous when the number of colors per group is very limited, but may not help when D_i is small and there is no need to limit any group to just one or two colors. For larger values of skew, the random menu method underperforms the others by a large margin. Apparently, with random menus, it’s difficult to do much better two colors per group, while the other methods are able to use just one color for most groups, since they choose the colors in a more informed way.

We conclude this section by examining how the performance of the few colors and menu methods varies with graph density (Figure 16). The relative ordering of the methods remains consistent with what we have seen before. As with the layering methods, we observe that the performance ratio improves as the density increases. Since dense graphs have larger values of Δ_o, the algorithms have more colors to choose from and this added flexibility
allows them to get a bit closer to the lower bound.

6 Closing Remarks

The edge group coloring problem is a natural generalization of the classical edge coloring problem in graphs. While all the algorithms studied here perform well on random graphs, only the few colors method and random menu method have good analytical bounds on their performance. It seems likely that similar bounds might be possible for the thin layers and min color methods, but currently our only bound is the trivial one of $D_i \Delta_o$. It remains open whether there exists an approximation algorithm with a constant performance ratio. The case of non-bipartite graphs appears to be entirely unexplored.

The menu-based methods can be applied directly to the problem of routing multicast connections in a three stage Clos network. They could also be applied to the problem of routing connections in an online manner. They
Figure 16: Effect of density on the menu methods

do require the ability to rearrange existing connections, when used in this application, but the impact of the rearrangement on existing connections would be fairly limited.

Our results apply to the version of the multicast packet scheduling problem in which the objective is to transfer a set of packets from inputs to outputs in a minimum amount of time. It does not apply directly to the more practically interesting problem of work-conserving scheduling. However, it might be possible to adapt the menu methods to this problem. The main challenge here is that multicast packets may involve copies going to both lightly-loaded outputs and heavily-loaded outputs. These outputs impose conflicting requirements on the scheduler, making it difficult to achieve strict work-conservation. However, the flexibility inherent in the menu methods may allow for some approximate form of work-conservation.
References

