Art Frazho
Purdue University

A band formula for a Toeplitz commutant lifting problem

Abstract

The band method plays a fundamental role in solving a Toeplitz and Nehari interpolation problem; see [2]. The solution to the Nehari problem involves the inverses of $I - HH^*$ and $I - H^*H$ where H is the corresponding Hankel matrix. Here we will derive a similar result for a certain commutant lifting problem.

Let Θ be an inner function in $H^\infty(E,Y)$ and $H(\Theta)$ the subspace of $\ell_2^2(Y)$ defined by

$$H(\Theta) = \ell_2^2(Y) \ominus T_\Theta \ell_2^2(E)$$

where T_Θ is the Toeplitz operator determined by Θ. Clearly, $H(\Theta)$ is an invariant subspace for the backward shift S_Y. Consider the data set $\{A, T', S_Y\}$ where A is a strict contraction mapping $\ell_2^2(U)$ into $H(\Theta)$, the operator T' on $H(\Theta)$ is the compression of S_Y to $H(\Theta)$, that is,

$$T' = \Pi_{H(\Theta)} S_Y | H(\Theta)$$

Here $\Pi_{H(\Theta)}$ is the orthogonal projection from $\ell_2^2(Y)$ onto $H(\Theta)$. Moreover, A intertwines S_U with T', that is, $T'A = AS_U$. Given this data set the commutant lifting problem is to find all contractive Toeplitz operators T_Ψ such that

$$\Pi_{H(\Theta)} T_\Psi = A. \quad (1)$$

This lifting problem includes the Nevanlinna-Pick and Leech interpolation problems. Using two different methods we will show that the set of all solutions are given by

$$\Psi = (\Upsilon_{12} + \Upsilon_{11}g)(\Upsilon_{22} + \Upsilon_{21}g)^{-1}.$$

Here g is a contractive analytic function acting between the appropriate spaces. Analogously to the band formulas in the Nehari interpolation problem, Υ_{jk} are determined by the inverses of $I - AA^*$ and $I - A^*A$. The proofs rely on different techniques. Finally, this is joint work with S. ter Horst and M.A. Kaashoek.

References

Talk time: 07/18/2016 3:00PM— 07/18/2016 3:20PM
Talk location: Cupples I Room 113

Special Session: State space methods in operator and function theory. Organized by J. Ball and S. ter Horst.