2016

Topological Transitions in a Superconducting Qubit

Arman Guerra

Follow this and additional works at: http://openscholarship.wustl.edu/undergrad_research

Part of the Quantum Physics Commons

Recommended Citation
Guerra, Arman, "Topological Transitions in a Superconducting Qubit" (2016). Undergraduate Research Symposium Posters. 86.
http://openscholarship.wustl.edu/undergrad_research/86

This Unrestricted is brought to you for free and open access by the Undergraduate Research at Washington University Open Scholarship. It has been accepted for inclusion in Undergraduate Research Symposium Posters by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
INTRODUCTION

Superconducting Josephson Junction resonators are highly tunable quantum systems. There is a field developing around the topology of quantum systems and recently, methods have been uncovered to measure a topological transition of the first Chern number (C_1). The following experimental setup is a great place to learn more about these topological effects.

SUPERCONDUCTING QUBITS

Figure 1: On the left we have an LC circuit which, at the correct resonance frequency, behaves as a harmonic oscillator with equally spaced energy levels. On the right, a Superconducting Josephson Junction shunted to a capacitor which acts as a nonlinear resonator.

We get a Hamiltonian in this system

$$H = \hbar \left(\delta \sigma_z + \Omega \sigma_x \cos \phi + \Omega \sigma_y \sin \phi \right)$$ (1)

With detuning δ, drive strength Ω, and Pauli matrices σ_x, σ_y, and σ_z.

Figure 2: Any qubit state can be represented by a point inside of a sphere called the Bloch sphere. In part (A) we have the (x,z) projection of the Bloch sphere. The green line is the ground state, the red line is the excited state, and the orange is a certain superposition of the two. This is analogous to the spins of the electrons shown in (B) and (C).

TOPOLOGY

Figure 3: An orange and a donut are topologically different because a donut has a hole in it and an orange does not. As we move to the second column and take a bite, this topological difference remains, but when we reach the third column, the two pieces of food are no longer topologically different. This is a topological transition.

Topology is the study of how some aspects of a system remain the same under changing parameters. The first Chern number is a topological invariant which counts the number of degeneracies inside of a closed manifold in Hilbert space. It is equal to the integral of the Berry Curvature over a closed loop

$$C_1 = \frac{1}{2\pi} \oint F \cdot d\sigma$$ (2)

Figure 4: The Aharonov-Bohm effect involves the same physics as the calculation of the Chern number. As the electrons move around the degeneracy, in this case a localized magnetic field, they gain phases which shift the ubiquitous Young-Fraunhofer interference pattern.

RESULTS

There is a degeneracy at $\Omega = \delta = 0$. For our experiment,

$$C_1 = \int_0^\pi F_{\theta\phi} d\theta$$ (3)

$$F_{\theta\phi} = \frac{\Omega \sin(\theta)}{2\delta\gamma}$$ (4)

Figure 5: The experimental drive as a function of Amplitude and Detuning, with a degeneracy shown at the center.

Figure 6: Some problems arose having to do with inconsistent rotation of the qubit state resulting from the varying drive detuning. (A) is raw data from a standard measurement procedure. (B) is data manipulated to counteract the qubit rotation. (C) is raw data from a procedure where the measurement was rotated at the same rate as the qubit. Further analysis is needed to show if the rotation methods used for B and C worked.

CONTACT INFORMATION

Web: http://murch.physics.wustl.edu/
Email: arman@wustl.edu

REFERENCES