The core variety of a multisequence in the truncated moment problem

Abstract

Let K denote a nonempty closed subset of \mathbb{R}^n, let $m = 2d$, and let $\beta \equiv \beta^{(m)} = \{\beta_i \in \mathbb{Z}_+^n, |i| \leq m, \beta_0 > 0\}$, denote a real n-dimensional multisequence of finite degree m. The Truncated K-Moment Problem concerns the existence of a positive Borel measure μ, supported in K, such that

$$\beta_i = \int_{\mathbb{R}^n} x^i d\mu \quad (i \in \mathbb{Z}_+^n, \ |i| \leq m).$$

The core variety of β, $V \equiv V(\beta)$, is an algebraic variety in \mathbb{R}^n that contains the support of any such K-representing measure. In previous work we showed, conversely, that if V is a nonempty compact set, or V is nonempty and is a determining set for polynomials of degree at most m (in particular, if $V = \mathbb{R}^n$), then β admits a V-representing measure. We describe some additional cases where a nonempty core variety implies the existence of a representing measure.

Talk time: 07/19/2016 2:30PM—07/19/2016 2:50PM
Talk location: Crow 206

Special Session: Multivariable operator theory. Organized by H. Woerdeman.