Selvarajan Veeramani
Indian Institute of Technology, Hyderabad, India

Level sets of condition spectrum

Abstract

For $0 < \epsilon \leq 1$ and an element a of a complex Banach algebra \mathcal{A} with unit e, the level set of ϵ-condition spectrum is defined as

$$L_\epsilon(a) ::= \left\{ \lambda \in \mathbb{C} : \|(a - \lambda e)e\| \|(a - \lambda e)^{-1}\| = \frac{1}{\epsilon} \right\}.$$

We prove the following topological properties about $L_\epsilon(a)$

1. If $\epsilon = 1$ then $L_1(a)$ has an empty interior unless a is a scalar multiple of the unit.

2. If $0 < \epsilon < 1$ then $L_\epsilon(a)$ has an empty interior in the unbounded component of the resolvent set of a. Further, we show that, if the Banach space X is complex uniformly convex or X^* is complex uniformly convex, then for any operator $T \in B(X)$, $L_\epsilon(T)$ has an empty interior.

Talk time: 2016-07-18 03:00 PM— 2016-07-18 03:20 PM
Talk location: Cupples I Room 218