A criterion for the solvability of a μ-synthesis problem

Abstract

We give a solvability criterion for the following μ-synthesis problem. Let μ be the structured singular value for the diagonal matrices with entries in \mathbb{C}.

Problem. Given distinct points $\lambda_1, \ldots, \lambda_n$ in the open unit disc \mathbb{D} and target 2×2 complex matrices W_1, \ldots, W_n such that $\mu(W_j) \leq 1$ for all $j = 1, \ldots, n$, find a holomorphic 2×2 matrix function F on \mathbb{D} such that $F(\lambda_j) = W_j$ for each j, and $\mu(F(\lambda)) \leq 1$ for all $\lambda \in \mathbb{D}$.

By [1, Theorem 9.2], this problem is equivalent to the following interpolation problem: does there exist a holomorphic function x from the disc to the tetrablock \mathbb{E} such that $x(\lambda_j) = (w_{11}^j, w_{22}^j, \det W_j)$ for each j? The tetrablock is the domain in \mathbb{C}^3 defined by

$$\mathbb{E} := \{(x_1, x_2, x_3) \in \mathbb{C}^3 : 1 - x_1z - x_2w + x_3zw \neq 0 \text{ for all } z, w \in \mathbb{D}\}.$$

In this talk we show such an x exists if and only if, for distinct $z_1, z_2, z_3 \in \mathbb{D}$, there are positive $3n$-square matrices $[N_{l,j,k}]$, of rank 1, and $[M_{l,j,k}]$ such that

$$\begin{bmatrix}
1 - \overline{z}_l x_3i - x_1^i z_k x_{3j} - x^i_{1j} \\
x_2^i z_l - 1 \end{bmatrix} \geq [(1 - \overline{z} z_k) N_{l,j,k}] + [(1 - \overline{\lambda}_j) M_{l,j,k}],$$

where $(x_1^j, x_2^j, x_3^j) = (w_{11}^j, w_{22}^j, \det W_j)$ for each j.