Corrigendum to: Operator monotone functions and Löwner functions of several variables

Jim Agler
University of California - San Diego

John E. McCarthy
Washington University in St Louis, mccarthy@wustl.edu

Nicholas J. Young
University of Leeds

Follow this and additional works at: http://openscholarship.wustl.edu/facpubs
Part of the [Analysis Commons](http://openscholarship.wustl.edu/facpubs)

Recommended Citation

Agler, Jim; McCarthy, John E.; and Young, Nicholas J., "Corrigendum to: Operator monotone functions and Löwner functions of several variables" (2014). *All Faculty Publications*. Paper 1.
http://openscholarship.wustl.edu/facpubs/1

This Article is brought to you for free and open access by the Washington University Open Scholarship at Washington University Open Scholarship. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Corrigendum to:
Operator monotone functions and Löwner functions of several variables

By Jim Agler, John E. McCarthy, and N. J. Young

Abstract

We fix a gap in the proof of Theorem 7.24 in Ann. of Math. 176 (2012), 1783–1826.

There is a gap in the proof of Theorem 7.24 in [1], though the statement of the theorem is correct.

In the proof of necessity, we argue that A is in \mathcal{G} by contradiction. If it were not, invoking the Hahn-Banach separation theorem would yield a real skew-symmetric matrix K and a constant $\delta \geq 0$ such that $\text{tr}(\Gamma K) \geq -\delta$ for all Γ in \mathcal{G}, and $\text{tr}(\Lambda K) < -\delta$. In the proof we assumed that $\delta = 0$, but this assumption is unjustified.

Instead, we argue as follows. Define Δ by

$$\Delta^r_{ij} = (x^r_j - x^r_i)K_{ji}, \quad i \neq j,$$

and with the diagonal entries Δ^r_{ii} chosen so that each $\Delta^r \geq 0$ and so that

$$\mu^r := \sum_{i=1}^{n} f_{r,i} \Delta^r_{ii}$$

is minimal over all choices of $\Delta_{11}^r, \ldots, \Delta_{nn}^r$ such that $\Delta \geq 0$. (A minimal choice exists, since all the $f_{r,i}$ are strictly positive by assumption.) Then Δ is in SAM_n^d, and

$$[\Delta^s, S^r]_{ij} = (x^s_j - x^s_i)K_{ji}(x^r_j - x^r_i) = [\Delta^r, S^s]_{ij}.$$
As f is locally M_n monotone, we must have then that $D\Delta f(S) \geq 0$ by Lemma 7.3. As

$$-\delta > \text{tr}(AK) = \sum_{1 \leq i, j \leq n} [D\Delta f(S)]_{ij} - \sum_{r=1}^{d} \sum_{i=1}^{n} \Delta_{ii}^r f_{r,i},$$

we get that

\[
\sum_{r=1}^{d} \mu^r - \delta > \sum_{1 \leq i, j \leq n} [D\Delta f(S)]_{ij} \geq 0. \tag{0.2}
\]

By Duffin’s strong duality theorem [2], the minimum μ^r in (0.1) satisfies

\[
\mu^r = \min_{i \neq j} \Delta_{ij}^r A^r(i, j), \tag{0.3}
\]

where A^r range over the set of real positive matrices such that the diagonal entries of A^r are f_{r1}, \ldots, f_{rn} for each r.

For each such $A = (A^1, \ldots, A^d)$, let Γ be the corresponding element of \mathcal{G}: $\Gamma_{ii} = 0$ and

$$\Gamma_{ij} = \sum_{r=1}^{d} (x_j^r - x_i^r)A^r(i, j) \quad \text{for } i \neq j.$$

We have

$$-\delta \leq \text{tr} \Gamma K$$

$$= \sum_{i \neq j} \sum_{r=1}^{d} (x_j^r - x_i^r)A^r(i, j)K_{ji}$$

$$= \sum_{r=1}^{d} \sum_{i \neq j} \Delta_{ij}^r A^r(i, j).$$

Hence, by equation (0.3), $-\delta \leq \sum_{r=1}^{d} (-\mu^r)$, so $\sum_{r=1}^{d} \mu^r \leq \delta$. This contradicts (0.2), so it follows that $\Lambda \in \mathcal{G}$, and necessity is proved.

References

(Received: September 3, 2013)

University of California San Diego, La Jolla, CA
http://math.ucsd.edu/people/faculty/Jim-Agler/

Washington University, St. Louis, MO
E-mail: mccarthy@math.wustl.edu
http://www.math.wustl.edu/~mccarthy/

Leeds University, Leeds, United Kingdom and
Newcastle University, Newcastle upon Tyne, United Kingdom
E-mail: N.J.Young@leeds.ac.uk
http://www1.maths.leeds.ac.uk/~nicholas/